
Infoblox
CCS Scripting Guide

for NetMRI 6.x and 7.x

Copyright Statements
© 2017, Infoblox Inc.— All rights reserved.
The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior

written permission of Infoblox, Inc.

The information in this document is subject to change without notice. Infoblox, Inc. shall not be liable for any

damages resulting from technical errors or omissions which may be present in this document, or from use of this

document.

This document is an unpublished work protected by the United States copyright laws and is proprietary to Infoblox,

Inc. Disclosure, copying, reproduction, merger, translation, modification, enhancement, or use of this document by

anyone other than authorized employees, authorized users, or licensees of Infoblox, Inc. without the prior written

consent of Infoblox, Inc. is prohibited.

For Open Source Copyright information, refer to the Open Source Components and Acknowledgements links in the

online help.

Trademark Statements
Infoblox, the Infoblox logo, and NetMRI are trademarks or registered trademarks of Infoblox Inc.

All other trademarked names used herein are the properties of their respective owners and are used for identification

purposes only.

Company Information
Web:http://www.infoblox.com/company/overview/contact

Document Updated: December 29, 2017

Warranty Information
Your purchase includes a 90-day software warranty and a one year limited warranty on the Infoblox appliance, plus

an Infoblox Warranty Support Plan and Technical Support. For more information about Infoblox Warranty information,

refer to the Infoblox Web site, or contact Infoblox Technical Support.

Product Information
Hardware Models

NetMRI: NetMRI-1102-A, NT-1400, NT-2200, and NT-4000

Infoblox Advanced Appliances: PT-1400, PT-2200, PT-4000, and PT-4000-10GE

Network Insight Appliances: ND-800, ND-1400, ND-2200, and ND-4000

Trinzic Appliances: TE-100, TE-810, TE-820, TE-1410, TE-1420, TE-2210, TE-2220, Infoblox-4010, and Infoblox-4020

All Trinzic Rev-1 and Rev-2 appliances

Cloud NetMRI: CP-V800, CP-V1400, and CP-V2200

Trinzic Reporting: TR-800, TR-1400, TR-2200, and TR-4000

DNS Cache Acceleration Appliances: IB-4030 and IB-4030-10GE

Document Number: 400-0713-000 Rev. A

https://support.infoblox.com
http://www.infoblox.com

Job Automation with CCS Scripting. 1

About CCS . 2

Tools for Using CCS . 2

When Errors Occur. 4

CCS Script Hierarchies . 4

CCS Variables Usage . 5

Setting Variables in Command Attributes . 6

Using List Variable Types . 6

Logical Expressions and Regular Expressions . 6

Standard CCS Attributes . 7

Script Section Attributes. 8

Action Section Attributes . 11

Trigger Section Attributes . 14

Issue Section Attributes . 19

CCS Data Archive and Export . 22

ARCHIVE . 22

CCS Data Export. 23

CCS Scripting Commands . 23

DEBUG . 23

GET-CONFIGS . 24

LOG {-INFO, -WARNING, -ERROR, -DEBUG} . 25

EXPR . 25

The getListValue() Function . 26

PRINT . 27

SKIPERROR. 28

SLEEP . 28

Commenting CCS Code . 29

Looping with CCS Scripting. 29

Using Filtering on Scripted Commands . 30

Well-Known Variables . 30

Scripting Example . 31
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide iii

iv Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Job Automation with CCS Scripting

NetMRI’s Job Management feature set (Configuration Management –> Job Management tab) enables automation of

processes for monitoring, network analysis and routine maintenance. Job Management is also the enabling feature

in the Automation Change Manager (ACM) system. Job Management and Job Automation operations involve the

following tools:

• Scripts, used for automation tasks on numerous devices across the network, to execute sequences of

Command Line Interface commands on network devices. Scripts can be written in Infoblox’s proprietary CCS

language or in Perl (using the standard Perl API).

Note: This document focuses on use of the CCS language. For more information on use of the Perl language in

job automation, see the Infoblox NetMRI Administrator Guide.

• Jobs, which are scheduled instances of CCS or Perl scripts that run against selected devices or device

groups. End-user credentials can be used for specific jobs;

• Config Templates, an easy editing environment in NetMRI to create standard configuration files and rapidly

duplicate configurations for deployment;

• Lists, tables of data referred to by scripts, for matching purposes during script execution;

• Custom issues, which can be raised by CCS or Perl scripts to announce/point out conditions discovered

during script processing.

Job automation ensures consistency across devices in the managed network and can save valuable time. Because

NetMRI supports both Perl and its own proprietary CCS scripting language, users can employ change automation to

do the following:

• Define generic configuration templates for large collections of like devices such as Cisco and Juniper routers

and switches;

• Execute mass change rollouts through the downloading of template files, reducing the need to execute

sequences of CLI commands and enabling larger-scale changes across the network;

• Reference external lists to populate variables when executing actions against devices.
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 1

Job Automation with CCS Scripting
About CCS

Note: NetMRI can only execute scripts on devices for which it has login credentials, even if the devices are within the

set specified by Script-Groups and Script-Devices.

CCS is a proprietary scripting language for executing sequences of command-line interface (CLI) commands on

NetMRI-supported network devices, to perform job automation tasks. If you know Cisco IOS, writing CCS scripts is

relatively straightforward. This document presumes prior knowledge of Cisco IOS and any other CLI interface for

devices such as Extreme, Juniper and other vendors supported by NetMRI. Some previous structured programming

knowledge will also be helpful.

While CCS is not as powerful or flexible as Perl, the learning curve is not as steep. CCS allows you to quickly develop

useful jobs that can run across hundreds of devices in the managed network.

Tools for Using CCS

NetMRI provides its own script editor, which can be found in the (Configuration

Management –> Job Management tab –> Scripts page by selecting the Action icon for a

script and choosing Edit.

The Edit Script window is the primary NetMRI tool for script editing, but you are not

limited to it. A standard text editor such as Notepad, Notepad++ or Notepad 2 may be

used to write scripts. To see an indication of how to do so, open the Edit Script window

and click Export. In the Windows file requester, you can select a preferred text editor to

automatically open the script file.

Once you write the script, execute it by selecting Run Now from the Action menu.

You may run the script against any device group, or select one or more devices in the Script Run Now wizard. We

advise strictly limiting the number of devices to run a script against until the script is verified to work without

problems.

After the script runs, NetMRI automatically displays the Job History page with your current job at the top of the table.

Note: If any devices in the selected Device Group are skipped over during script execution, the Job History will show

the job status as Skipped. This does not indicate the script failed to run; it simply indicates that the job did

not execute on one or more devices in the job run. This is expected behavior.

To view the job status, click the link in the Name column. The Job Viewer appears in a separate browser window,

showing the Details page. Details lists all the devices participating in the job.
2 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

About CCS
The Status column shows the broad result of

the script’s execution of each device. It does not

indicate whether the script’s results are what

was desired during its run; a status of OK means

that the script ran to completion on the device.

When a Skipped status appears, it indicates a

device in the chosen Device Group has been

skipped over during the script’s execution,

most likely due to it being filtered out by a

Script-Filter: attribute, which is discussed later

in this document.

The Files tab provides access to any individual

text output files defined in the CCS script. CCS

uses specific command directives to send

desired output from devices to an external text

file. Each device may have its own external text

file associated with it, and a script may append

text multiple times to the same file.

Clicking on the Status link (which will read

Skipped or OK in most cases) for any device in

the Job Viewer, opens the Job Details Viewer in another browser window. The Job Details Viewer shows the results of

the job run on the chosen device.

After a script executes and you click a Status link, the Job Details

Viewer displays the Process Log page. The Process Log shows, in

graphic form, the execution sequence for all CCS sections, CCS

attributes and automated CLI commands (see CCS Script Hierarchies

for more information).

The process log highlights all successive matches for the script

iteration that ran on the current device. Any successful pattern match

against device command output in a script execution appears in

green as shown here. A process log may be much longer than the illustrated example. (We return to a more-complete

example later in this Guide.)

Along with the graphical Process Log, the Status Log page provides the raw-text version of the same information

graphically shown in the Process Log, for all statements executed in the script, and their result (whether they matched

or were not matched in the script):

+++ 1. Action: Execute Command Batch
+++ 1. [Action-Commands]
+++ 1. Command condition ... MATCH
+++ 1. Sending 'show int summ' ... OK
+++ 1. [Action-Commands]
+++ 1. Command condition ... MATCH
+++ 1. Sending 'sh int' .. OK
+++ 1.1. Trigger: Show Ethernet Interfaces
+++ 1.1. Trigger-Template .. MATCH

The Job Details Viewer’s Custom Log page provides the logging information embedded into a script using LOG

commands (see the LOG {-INFO, -WARNING, -ERROR, -DEBUG} topic for more information).

The Job Details Viewer’s Files page provides download links for any files associated with the device’s script execution.

In CCS scripts, files are created and written using the ARCHIVE directive. Files can only be associated with each device

in the script, and cannot be concatenated into a single large file encompassing the entire script run. Also see CCS
Data Archive and Export for more information.
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 3

Job Automation with CCS Scripting
When Errors Occur

When the Job Viewer’s Status column shows Errors for the executed Job,

it individually lists all devices exhibiting errors. Clicking on an Error link

for any device shows the location of the error in the Process Log. Errors

appear in red. Errors can be due to many issues, including typos in a

command directive, incorrect use of an attribute or mistakes in device

group assignment.

If a script generates a list of errors, keep the Job Viewer window open, go to Configuration Management –>

Job Management –> Scripts in NetMRI and edit the script to fix the errors. Back in the Job Viewer, click the

Rerun Errors button. A form page appears in the window, used to re-run the script against the devices that

failed the script execution in the existing job instance. Clicking Run Now executes a new Job without the

need to go back through the Script Run Now wizard.

Failure to match a pattern in device output will not generate errors–a

Filter Does Not Match message appears in yellow in the Process Log

page. This typically indicates that a pattern specified in a

Script-Filter: attribute or Trigger-Filters: attribute does not appear in the CLI output generated through the script, or

that the pattern is incorrectly specified through a typo or an incorrect regular expression.

Note: Exercise caution when writing and executing CCS scripts. Because error checking is not precise even in the best

of cases, it is possible to execute endless loops that may result in needing to reboot the NetMRI appliance to

stop the runaway job. Test scripts against a single network device and avoid running scripts against

production networks until you are certain the script will have a properly finite execution.

CCS Script Hierarchies

CCS uses four basic building blocks for job automation, which are called sections in each CCS script.

•Script–the written CCS script, written using a text editor and

imported into NetMRI, or written using NetMRI’s built-in Edit

Script feature. The Script section identifies the working set of

network devices to be acted on by the CCS script. The script

runs only on the devices that the user wants to run it upon.

One Script section can be defined per script. The device

identification is carried out through subordinate elements

such as variables and filters. The Script section precedes all

other section types, including Actions, Issues and Triggers.

The simple script workflow example here shows a Script

section that enables the script to run on a specific device or

device group (by logging in to the device), and then passes the

execution on to an Action section, which operates on each

logged-in device in turn, sending a batch of CLI commands.

• Action–An Action section defines a sequence of CLI commands to be executed by the script on the matching

device(s). The CLI commands are derived from the command syntax for the network infrastructure devices

involved in the job–Cisco, Extreme, Juniper, and so on. Any CCS script must contain at least one Action section.

• Issue–An Issue section processes the output of the CLI commands (the responses produced by the device as a

response to the executed CLI command) and generates a custom CCS issue. An Issue is similar to a custom type

of Trigger (see the following paragraph for more). Those custom issues are added to NetMRI’s Issues list

(Network Analysis –> Issues) and affect the NetMRI appliance’s Network Scorecard values.

• Trigger–A trigger section responds to CLI output by issuing new sequences of CLI commands to change device

configurations, or to generate further output from the network device in an attempt to activate a second trigger.

Thus, you can nest triggers in scripts to perform more complex processing.

Simple Action

Script
Section

Action
Section

D
ev

ic
es

/
D

ev
ic

e-
G

ro
up

Login

Commands
4 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

CCS Variables Usage
Other vital elements of the CCS scripting language include the following:

— Variables (see the section CCS Variables Usage for more);

— Attributes, which are the parts making up each section (see the topics in the section Standard CCS
Attributes for more);

— Looping (see the section Looping with CCS Scripting for more).

CCS Variables Usage

Scripting and programming languages use variables to define important values that allow the NetMRI job engine to

respond according to what it sees in the data it’s parsing. CCS is no different; in each section of a CCS script (Script,

Actions, Issues and Triggers), you use variables to define the values that CCS uses to run CLI commands and to match

against output data from network devices.

NetMRI ‘s job engine recognizes several types of variables:

Well-Known Variables–A set of standard variables universally recognized by the NetMRI job engine in all scripts

whereever they are called out. See the section Well-Known Variables for a list and brief descriptions of the well-known

variables in the NetMRI system.

Script-Variables–User-defined variables that are used in sections of a script to allow interactive user/admin input

during script execution. You define Script-Variables in the Script section of any script. (See the section

Script-Variables: for more detail.) When a script runs, a Script-Variable prompts the user running the script to

enter the value (IP address, user name, device name, etc...).

A Script-Variable can refer to lists in the NetMRI system (Configuration Management –> Job Management tab –>

Lists) as an input type. (See and The getListValue() Function for more detail.)

Trigger-Variables–A special variable type, limited to Trigger sections, that is used to extract pieces of information from

the command-line output resulting from an Action-Command attribute. Consult the topic Trigger-Variables: for more

information.

SET variables–Custom, user-defined variables that can be declared only in specific Command scripting attributes.

SET variables can also reference lists, which are two-dimensional tables of data that are installed into the Lists page

in NetMRI. See Setting Variables in Command Attributes for more.)

Note: A longer list of NetMRI-standard scripting variables can be found in the section “Scripting Well-Known

Variables (Perl and CCS)” in the Infoblox NetMRI Administrator Guide or in online Help.

In CCS scripts, you always declare a variable by using a dollar sign, which is also the sign of a Perl scalar variable:

$vendor

CCS scripts also reference declared variables with the dollar sign. Setting a value for a variable requires standard

arguments:

— eq (Equal to)

— like (Similar to, used with wildcards)

— in (variable value is contained in the following)

— ne (not equal to)

Declaring a variable, even if you do not assign it a value, also requires declaring its type, including the possibility of

using a list:

— regular expression (example in section Setting Variables in Command Attributes)

— word (string)

— boolean

— string

— list
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 5

Job Automation with CCS Scripting
Setting Variables in Command Attributes

You can declare a special variable type, called a SET variable, in Action-Commands and Trigger-Commands

attributes of a CCS script. The following examples illustrate how SET variables may be used to keep track of a state.

An Action-Command attribute declaration also illustrates the valid use of an equals sign operator (=):

Action-Commands:

SET: $updateMade = "no"

In Action-Commands and Trigger-Commands attributes, a SET variable can refer to a list in NetMRI and reference

its data (also see the section The getListValue() Function):

Action-Commands:{$location eq "West"}

SET: $log1 = getListValue(NetworkServers,Geo,WS1,NMAddr,null)

If the value found in the $location variable happens to be West, the script opens the list NetworkServers from

NetMRI and searches for the specified value.

Using List Variable Types

CCS can reference lists in the NetMRI system (lists are edited and imported in the Configuration Management –> Job

Management tab –> Lists page). The following arguments are used by CCS when declaring list variables in a

Script-Variables section:

$variableName list “list_name”,”key_column”,”key_value”,”returnvalue_column”,”default”

The value $variableName is the name of the variable to which the result of the list lookup will be assigned. The

list keyword is required. The third argument consists of the following: In the given list_name, in the
key_column, look for the first match of the specified key_value from top to bottom of the list. If a match is
found, return the value contained in the returnvalue_column in the same row in which the match was found,
else, return the default response. Omitting the optional default argument is the same as specifying a default

argument of “”; in other words, an empty string.

An example:

$oscheck list zoneID,serveraddr,eng.corp100.com,ostype,NOMATCH

Here, a list called zoneID is present (or presumed to be present) in the NetMRI Lists page, instructing to search in the

column serveraddr for the key_value eng.corp100.com, and if a match is found, return the value found in the

matching row’s ostype column into the variable $oscheck. If no match occurs, the string NOMATCH is assigned to the

variable $oscheck.

Also see the section The getListValue() Function for more information about using list data in CCS scripts.

Logical Expressions and Regular Expressions

CCS supports logical expressions and regular expressions for more-complex value matching and triggering only when

two or more conditions are met.

Consider the following statement:

Trigger-Filter:

$adminMode ne "trunk" and $operMode ne "trunk"

The scripting statement calls two variables ($adminMode and $operMode). In this case, both are well-known

variables. The logical and operator determines that the match applies only if both variable values (a show interface

operation listing the administrative mode and operational mode for a switch port) do not reflect the stated

equivalence of “trunk”, and because the statement is part of a trigger-filter, the corresponding

Trigger-Section is called by the script.

Valid Boolean logical operators include:

— and (&&)

— or (| |)
6 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
The meta characters that can be used to build regular expressions for CCS scripts include the following:

A string variable with a regex may be used to match against multiple instances of similar values in the same variable:

Trigger-Variables:

$ifName "/FastEthernet[^]*/"

A Perl-style regex is used to define $ifName. First, the entire string is enclosed in quote marks (“”) to ensure that the

entire string, including any spacebar characters (such as you would see in a Cisco int FastEthernet0/11

command string) is treated as a single parameter when declaring the variable.

/FastEthernet[^]*/

The two forward slashes encapsulate the full string to match against, which contains a regular expression.

FastEthernet[^]*

An extensive discussion of regular expressions is beyond the scope of this document; CCS supports the same

conventions for regular expressions as the Perl language.

Standard CCS Attributes

Each section type—Script, Action, Issue and Trigger—is written using a series of attributes that define how NetMRI

processes the section. CCS defines a set of standard attributes used by all scripts to contain defined values, call other

script sections, load list data and other functions.

Unlike variables, an attribute may contain multiple values and call other scripting elements. An Action, for instance,

can call a Trigger.

| OR operator. Provides alternatives for matching. The left side of the | may match, or the right side may.

To be meaningful, it must be enclosed by parentheses “().”

* Match the preceding item 0 to n times, of a character or set of characters. Classic wildcard operator.

[] (Square brackets) Set an inclusive range of values or an inclusive operation within a pattern, or a

match against alternatives.

{ } (Curly brackets) Allows matching against a specific number of occurrences of a pattern, a range

defining the minimum and maximum number of instances to match against, and a starting value for n

to infinite matches for a pattern. Its function is related to the + and * operators.

() Enables matching against one of a set of alternatives, if combined with the OR operator (|).

+ 1 to n occurrences of a character or set of characters.

^ Boolean NOT operator. Prevents a specified character, delimiter, value or string from being included

in a match within the specified pattern.

/<pattern>/ Encloses the pattern/regular expression to be compared against the fetched value in the variable $_.

. Matches any single character.

“ “ Double quote marks enclose the entire pattern to match.

Issue Section
 Issue-ID
 Issue-Severity
 Issue-Template
 Issue-Filter
 Issue-Details
 Issue-Variables
 Issue-Description

Action Section
 Action
 Action-Commands
 Action-Description
 Action-Filter
 Action-Timeout
 Output-Triggers

Trigger Section
 Trigger
 Trigger-Template
 Trigger-Commands
 Trigger-Filter
 Trigger-Variables
 Trigger-Description
 Output-Triggers

Script Section
Script:
Script-Filter
Script-Description
Script-Variables
Script-Timeout
Script-Login

Attributes in bold are mandatory when the section type is used in a script.
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 7

Job Automation with CCS Scripting
Note: All attributes specifications in CCS scripts are case-sensitive–each attribute is cited in initial caps in a script,

as in Action-Filter or Issue-Variables.

Though attributes within a section type are mandatory or optional, a specific section type is not necessarily required

for a script. For example, the Cisco Set Port Fast CCS script (found in Configuration Management –> Job Management

tab –> Scripts) contains two Action sections and two Trigger sections, with no Issue section.

Standard CCS attributes are described in the following subsections.

Script Section Attributes

Every CCS script must have a Script section, which defines the devices on which the script will execute, and can

contain other script features such as new variables for use by other parts of the script; a timeout period; and any

possible admin login information needed by the devices for which the script runs against. Script sections are defined

using the following attributes:

*These attributes are specified in fields in the Edit Script dialog. They are present as separate lines when the script is viewed
in text form after exporting. If you create a script in a text editor and import it into NetMRI, these lines are transcribed into
the corresponding fields in the Edit Script dialog.

‡These attributes are described here for reference. If entered in a script, an error is generated when the script is saved. Use the
UI to define these values. For reference, define these attributes and comment them out in the script.

The Script and Script-Filter attributes are mandatory.

Script:

Used In: Script sections

Status: Mandatory

The Script attribute is normally entered in the Name field in the Edit Script dialog. Information here is also provided

for cases when a script is created in an external text editor, then imported. The Script attribute can contain any text

characters.

Example

#Script: Example 4 –> Cisco Set Duplex

Script-Description:

Used In: Script sections

Status: Optional

This attribute is normally entered in the Description field in the Edit Script dialog. Information here is useful when a

script is created in an external text editor, then imported into NetMRI.

Attribute Status Purpose UI Field

Script: (required) defines the script name*‡ Name

Script-Filter: (required) defines the type of devices to be processed Script Run Now

Wizard

Script-Description: (optional) describes the script purpose*‡ Description

Script-Timeout: (optional) define a time period for the script to wait for output N/A

Script-Variables: (optional) input values when executed through the Run Now

feature

N/A

Script-Login: (optional) True or False, default is True if not used N/A
8 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
You use the Script-Description attribute to provide a description of the script. The attribute can contain any

number of plain text lines (no HTML tags).

#Script-Description:
#This script sets the duplex to auto on all Fast Ethernet
#interfaces on all Cisco switches.

Script-Filter:

Used In: Script sections

Status: Mandatory

A script attribute that defines the devices that will be acted upon by the CCS script. When a script runs, the

Script-Filter ensures that no matter what device group is chosen, the script will run only on the devices that the

user wants.

Use the Script-Filter attribute to specify the set of network devices (by IP address range, model type, NetMRI

Device Group, etc...) to be acted upon by the CCS script during execution. Filtering uses the same syntax used for

defining device groups (see the Understanding Group Membership Criteria topic in online Help for details). Filtering

uses variables to specify the data types and value ranges required by the script. To tie more than one variable into a

Script-Filter attribute, use Boolean operators such as “&&” (“and”), and the “|” character (“or”).

You can also nest logical operators using parentheses (). For some variables, you can use multiple matches enclosed

by square brackets “[]”.

Example

A single AND operator is used.

Script-Filter:

$Vendor eq "Cisco" and $Model in ["2811", "2821", "871", "2621XM"]

A filter can use multiple AND operators, or whatever logic is necessary for filtering.

Script-Filter:

$Vendor eq "Cisco" and

$sysDescr like /IOS/ and

$Version like /^1[2-9]/ and

$Type in ['Router', 'Switch-Router']]

A more complex Boolean operation is used, with parentheses encapsulating arguments.

Script-Filter:

($Vendor eq "Cisco" && $Model in ["2811", "2821", "871", "2621XM"]) or
($Vendor eq "Extreme" and $sysDescr like /XOS/)

Script-Login:

Used In: Script sections

Status: Optional

The Script-Login attribute is available in the Script header section for both CCS and Perl scripts. This attribute

specifies whether the job engine should automatically establish a connection with the target device. The only valid

values for this attribute are “true” or “false”. Should the Script-Login attribute not be specified, the value defaults

to “true”. You will note that most CCS scripts in NetMRI do not use this attribute, ensuring that NetMRI uses the

credentials in its database to log in to the target devices.

For CCS scripts, the value is respected. That is, if the value is “true” a connection will automatically be established

with the target device. If the value is “false” no connection is established with the target device.

Example

Script-Login:

false
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 9

Job Automation with CCS Scripting
If you want to hide the password string and replace it by stars characters ****** in logs, use the <hidden></hidden>

tag:

Action-Commands:

config terminal

username $username password 0 <hidden>$password</hidden>

exit

write memory

Script-Timeout:

Used In: Script sections

Status: Optional

You use the Script-Timeout attribute to define the desired period of time for which the script will wait for

completion of any directive to a device. When a command finishes executing on a network device, it returns the

prompt back to the session. CCS watches for this before attempting further interaction with the device in question.

By default, Script-Timeout values are set to 60 seconds in the NetMRI system; if the executed device command

does not return the prompt back to CCS within 60 seconds, you will receive a timeout error from CCS.

The maximum timeout value is 300 seconds. Setting this value will globally apply to the entire CCS script unless you

change an Action-Timeout: value, which overrides the global Script-Timeout value for that Action section.

Also see Action-Timeout: for a corresponding timeout value that can be set for individual sections of a script.

Example

Script-Timeout: 300

Script-Variables:

Used In: Script sections

Status: Optional

Note: Script-Variables are not allowed if the Script-Schedule attribute is defined in the same section,

because scheduled scripts must have all necessary data defined for them at runtime.

You use the optional Script-Variables attribute to define data input prompts to be displayed to the user when

manually executing a CCS script. This is how you allow user input into an executed CCS script. The CCS script uses the

values entered by the user as it executes. The Script-Variables attribute requires one or more variable definitions.

Each variable must be defined on its own line, as in the following example:

Script-Variables:
$usernameword "User Name"
$password "New Password" string

The exact format of a Script-Variable definition is:

<variableName> <inputType> <defaultValue> <evalType>

<variableName> can be any string (without blanks) that starts with $.

Note: Variable names are case-insensitive. Script variables can be referenced from anywhere in the script, but

only in lower case.

<inputType> determines the type of HTML entry used in the script input form and enforces input validation on

values entered into the form. For example, to ensure that an IP address in dotted notation (or hostname) is

entered, declare a variable with <inputType> of <ipaddress>. The following inputTypes are supported, with

the associated HTML entry fields:
10 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
When first shown, <defaultValue> appears as the variable value in the script input form. You can overwrite the

value as needed before submitting the form. <EvalType> specifies how the value should be evaluated when used

in a logical filter expression. The <evalType> can be specified as string (this is the default if nothing is specified),

number, or ipaddr. For example, to look for interfaces where $ifIndex < 10, specify “number” as the <evalType>

for the $ifIndex variable.

Note: By default, all variables are evaluated as strings in filter expressions.

Example

Script-Variables:

$change_location boolean

$new_location string "Enter location here"

$add_community boolean

$new_community string "Enter community here"

Action Section Attributes

Action sections send CLI command strings to specified devices. Scripts use

the Action section to execute CLI commands to set properties on a network

device, or to generate output to be used by the Trigger or Issue sections. At

least one Action section must be defined within any CCS script, and more than

one Action section may be defined in a script. Action sections also may be

used in combination with other attributes. The figure to the left indicates that

multiple Action sections may be defined in a script.

Based on the response from each device across the CLI session, it’s possible

to make decisions on that CLI output, based on filtering that information to

see if it matches a particular value or result; calling another Action as a result;

calling an Output-Trigger section of the script to execute a more-complex

operation such as a loop (for example, to check a large number of interfaces

on a single switch; see Trigger Section Attributes for more information), or if a

particular state is shown in the CLI output as the result of the Action, display

an Issue in NetMRI. (The section Issue Section Attributes shows an example.)

inputType Corresponding HTML Input method notes

string, word, int, integer, double,
datetime, duration, url, id, phoneno,
zipcode, email, ipaddress, regular ssi

Text One line of text can be entered

in the input form field

list listName (from NetMRI),

ColumnLookupName,

KeyValueName,

ReturnColumnValue,

DefaultName

Use a separately defined list

(see The getListValue() Function

section for more information).

password Password Same as Text, except all

characters entered into the form

are obscured

text Textarea Multiple lines of text can be

entered in the input form field

boolean check box If checked, value sent to server

is “on”; Otherwise it is “off”

Issues from Different Actions

Script
Section

Action
Section 1

D
ev

ic
es

/
D

ev
ic

e-
G

ro
up

Login

Commands

CLI Output 1
CLI

Output 1

Issue
Section 1

Action
Section 2

CLI
Output 2

Issue
Section 2

Commands

CLI Output 2
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 11

Job Automation with CCS Scripting
Attributes supported by the Action section include:

Action:

Used In: Action sections

Status: Mandatory

Action is a required attribute used to name the Action. This name must be unique within the CCS script to allow the

definition of other Action attributes.

Example

Action: Set User Password

Action-Description:

Used In: Action sections

Status: Optional

The Action-Description attribute provides descriptive text for the current action section.

Example

Action-Description:
This script sets the password for certain pre-determined
user accounts to the same password.

Action-Commands:

Used In: Action sections

Status: Mandatory

The Action-Commands attribute is used to define a series of one or more command strings, entered one per line, to

execute for each device that meets the criteria established in the Action-Filter.

Example

Action-Commands: show interfaces

You can extend Action-Commands to specify optional filter criteria, enclosed by curly brackets { } that restrict

execution to cases where specific conditions exist. Example:

Action-Commands: { $Vendor eq "Cisco" }

show interfaces

Besides CLI commands, the Action-Commands attribute accepts the sleep directive, which pauses script execution

for a specified number of seconds. Syntax for this directive is:

sleep: <numberOfSeconds>

Attribute Status Purpose

Action: (required) name of Action

Action-Description: (optional) describes the Action

Action-Filter: (optional) defines when the Action should be executed

Action-Commands: (required) defines the device commands to be executed

Action-Timeout (optional) define a time period for the script to wait for output

Output-Triggers: (optional) defines how to process the output stream

Action-Prompt: (optional) defines the new prompt on an action
12 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
This example shows how a script can be paused for 10 seconds:

Action-Commands:
... <some commands>
sleep: 10
... <more commands>

SET variables may be defined in Action-Commands:

Action-Commands:

SET: $runscript = "no"

SET: $nofireissue = "no"

SET: $do_acl = ""

SET: $do_type = ""

SET: $do_clear = "no"

Action-Filter:

Used In: Action sections

Status: Optional

The Action-Filter attribute is similar to the Script-Filter discussed in Script Section Attributes, with the

exception that an Action-Filter can reference SET variables. The purpose of the Action-Filter attribute is to

include or exclude certain devices from execution by the Action-Commands attribute defined in the Action section.

If the filter evaluates to “true,” the script executes subsequent Action-Commands. If the filter evaluates to “false”,

further Action-Commands will not execute. An absence of this attribute within an action section means the filter will

automatically be set to “true” and the Action-Commands execute for all devices.

Any SET variable defined in this attribute can be referenced by following parts of the CCS script.

Example

Action-Filter:

$runscript ne "no" and $do_acl ne "" and $do_contents ne "" and

$change_ok eq "yes"

Action-Timeout:

Used In: Action sections

Status: Optional

You use the Action-Timeout attribute to enforce a specific timeout value for a particular Action section in a script.

By default, Action-Timeout inherits its value from the value set for Script-Timeout. When a command finishes

executing on a network device, it returns the prompt back to the session. CCS watches for this before attempting

further interaction with the device in question. If the executed device command does not return the prompt back to

CCS within 60 seconds, you will receive a timeout error from CCS. Action-Timeout values inherit their default

settings from the global Script-Timeout value in the NetMRI system. The maximum timeout value is 300 seconds.

Setting this value in a specific Action section will override the global Script-Timeout value for that Action section.

Example

Action-Timeout: 300

Output-Triggers:

Used In: Action sections

Status: Optional

Use the optional Output-Triggers attribute to specify additional processing after the Action-Commands attribute

has been executed. Output-Triggers can be used to continue processing with one or more additional Triggers or

Issues.
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 13

Job Automation with CCS Scripting
Output-Triggers can perform many independent actions on the output of Action-Commands. Below, two

additional Triggers are called in order; when finished, the script calls an Issue.

Example

Output-Triggers:

Process Down Interfaces <- Trigger

Process Up Interfaces <- Trigger

Generate Initial Interface Issue <- Issue

Action-Prompt:

Used In: Action sections

Status: Optional

Use the Action-Prompt attribute to override the device prompt when the command(s) executed in the

Action-Commands attribute change the prompt on the device.

Note: The default CCS scripting engine works for many of the cases.

Example

Action: show run 1

Action-Commands:

sh run

Action: Create ACL

#here we need the 3 prompt to handle the 3 cases including exit

Action-Prompt: /(DEVrtr01\(config-ext-nacl\)#)|(DEVrtr01\(config\)#)|(DEVrtr01#)/

Action-Commands:

 conf t

ip access-list extended test2

exit

Trigger Section Attributes

Trigger sections are optional but can add a lot of flexibility to a CCS

script. They are used to process output from CLI commands initially

executed by another Action (or possibly another Trigger) section.

(The figure to the left shows an Action calling a Trigger section.)

Triggers can be used to process the CLI output from the first batch of

CLI commands in an Action section, by executing another batch of

more-detailed commands on the same device currently being

processed. Such detailed commands may be used to extract

additional information required for later Actions, Triggers or Issues;

among the possibilities is to change the device configuration to

actually fix a problem.

Triggers perform “IF –> THEN” logical comparisons of the results of

CLI commands, iterating over all occurrences of a given pattern in the

output stream. Triggers are the only looping mechanism provided in CCS. They can call other Triggers, allowing

multiple levels of logical checks before taking final action.

Simple Trigger

Script
Section

Action
Section

D
ev

ic
es

/
D

ev
ic

e-
G

ro
up

Login

Commands

Trigger

Output

Output

Cmd2
14 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
The primary difference between an Issue section and a Trigger section is that the Trigger executes a set of commands

compared to an Issue which generates an Issue for NetMRI to report. They both use variables and templates to define

patterns of interest, and they can both use filter expressions to determine if something needs to be done.

Triggers support the following attributes:

*Trigger-Template and/or Trigger-Filter must exist in a Trigger section.

Trigger:

Used In: Trigger sections

Status: Mandatory

Defines the trigger type. The preceding Action sections call the value defined in the Trigger: attribute, using the

Output-Trigger attribute. All trigger names must be unique in the current script.

Example

...

Output-Triggers:

Find ACL

##

Trigger:

Find ACL

Trigger-Description:

Used In: Trigger sections

Status: Optional

Optional attribute to describe the functions for the current trigger.

When CSS detects the Trigger-Description section, the following description is not treated as code and is

otherwise ignored.

Example

Trigger-Description:

The following Trigger-Template is applied to the output stream
of the previous Action-Commands to determine if the following
Trigger-Commands should be executed.

Attribute Status Purpose

Trigger: (required) Trigger name

Trigger-Template: (required*) identify patterns in output stream for processing

Trigger-Filter: (required*) defines when commands should be executed

Trigger-Commands: (required) defines the device commands to be executed

Trigger-Description: (optional) displayed as help text in the Process Log

Trigger-Variables: (optional) define/store values extracted from output stream

Trigger-Prompt: (optional) defines the new prompt on a trigger

Output-Triggers: (optional) defines how to process the output stream
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 15

Job Automation with CCS Scripting
Trigger-Template:

A text snippet that defines the command syntax to match against the output from the device. You can call values from

variables in a Trigger-Template to flexibly match multiple instances or to detect a particular value.

When NetMRI’s CCS scripting engine receives the output from the executed command sequence, CCS references the

first output trigger to process the command output. Within the trigger, a segment of command output, using variables

and wildcards if necessary, ranges over the output stream and executes an associated set of Trigger-Commands if

necessary (see following section).

Example

Trigger-Template:

username $username password 0 .*

This example shows Cisco but can be for any vendor supported by NetMRI.

The Trigger-Template provides a pattern matching window that is applied across the most recent CLI command

output stream. The template matches characters in the command output zero to possibly many times. If no matches

occur, the script stops the execution of the trigger. If one or more template matches is found, the trigger continues

processing the Trigger-Filter for each match.

Example

Consider the following Trigger-Template which uses declared Trigger-Variables ($ifName and $ifDuplex);

note the use of the “+” operator, which matches against 1 to n instances of a set of characters:

Trigger-Template:

[[$ifName]] is.+, line protocol is.+
...
Keepalive.+
[[$ifDuplex]]-duplex.+

and the following output stream:

0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out
FastEthernet0/1 is up, line protocol is up
Hardware is Fast Ethernet, address is 0002.b9fc.b701
MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive not set
Auto-duplex (Half), Auto Speed (10), 100BaseTX/FX
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:00:00, output 00:00:00, output hang never
Last clearing of "show interface" counters never

The Trigger-Template matches the previous command output stream, because the Template contains several

regular expressions and fixed patterns.

Because the Trigger-Template matches at least once, the processing of the Trigger continues. Because the

Template uses previously defined Trigger-Variables (within double-brackets “[[]]”), the script extracts

corresponding values from the command output stream for use in the Trigger-Filter. For example, $ifName now

contains the value FastEthernet0/1 and $ifDuplex contains the value Auto.

The pattern matching notation “...” appearing in the above Trigger-Template means “match 0 or more lines” and

is used to skip over multiple lines of text while scanning for the next occurrence of a pattern (e.g., the text Keepalive).

Trigger-Commands:

Used In: Trigger sections

Status: Mandatory
16 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
The Trigger-Commands attribute enables substantial follow-up actions to be taken by a Trigger section following an

Output-Trigger call. The attribute allows the script author to execute a sequence of CLI commands for all template

matches that pass the Trigger-Filter criteria. Each command must appear on a new line. You can use Conditional

processing with { } notation (similar to Action-Commands in the Action-Commands: topic) in Trigger-Commands as

well.

Besides CLI commands, the Trigger-Commands attribute accepts sleep directives, which pause script execution for

a specified number of seconds.

sleep: <numberOfSeconds>

Example

Trigger-Commands:

config terminal

interface $ifName

spanning-tree portfast

exit

exit

SET: $updateMade = "yes"

Example

Trigger-Commands: { $priority eq "0" and $state ne "Ready" }

SET: $matchFound = "yes"

...

In both cases, the SET variables are newly declared in the script. It forms a basic IF-THEN loop, in this case where IF

the device’s priority value is “0” and the device’s state is determined to not be READY, the new matchFound variable

is set to “yes” and further script directives designed to respond to the state will execute.

That SET variable also can be referenced anywhere else as needed in the script after declaration.

Note: This example is in a Trigger section. A Trigger-Command is the only attribute type that can execute any type

of looping or iterative processing in a CCS script. For more, see the Trigger-Commands: section of this Guide.

Trigger-Filters:

Used In: Trigger sections

Status: Optional

The Trigger-Filters attribute is used to determine if Trigger-Commands and Output-Triggers attributes in

the Triggers section of the script should run. If no Trigger-Filter exists, the script runs for every match identified

by the Trigger-Template.

Trigger-Filters can contain Script, Trigger and SET variables and apply to every template match instance.

Example

Trigger-Filter:

$adminMode ne "trunk" and $operMode ne "trunk"

Example

In this case, a match is made with a boolean OR:

Trigger-Filter:

$ifName eq "FastEthernet0/0" |

$ifName eq "FastEthernet0/1"
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 17

Job Automation with CCS Scripting
Trigger-Prompt:

Used In: Trigger sections

Status: Optional

Use the Trigger-Prompt attribute to override the device prompt when the command(s) executed in the

Trigger-Commands attribute change the prompt on the device.

Note: The default CCS scripting engine works for many of the cases.

Example

Trigger: acl test3

Trigger-Template:

 ip access-list extended test2

Trigger-Prompt: /(DEVrtr01\(config-ext-nacl\)#)|(DEVrtr01\(config\)#)|(DEVrtr01#)/

Trigger-Commands:

 conf t

 ip access-list extended test3

 exit

Trigger-Variables:

Used In: Trigger sections

Status: Optional

CCS scripts use the Trigger-Variables attribute to define “patterns of interest” found within the output generated

by CLI commands. Trigger-Variables are used in Trigger-Templates to extract certain values from command

output to be used in determining if certain conditions exist on the device. The format of Trigger-Variables is as

follows:

<variableName> <extractPattern> <evalType>

<VariableName> can be any name (without blanks) that starts with $. Variable names are case-insensitive and can

be accessed anywhere in the script.

<ExtractPattern> can be specified using any of the keywords listed below, or specified as a regular expression.

<evalType> specifies how the variable value should be evaluated when used in a logical filter expression, as a string

(this is the default if nothing is specified), a number, or an ipaddr.

extractPattern Corresponding Regular Expression

String /[^\r\n]+/

Word or Id /\w+/

Int or Integer /\d+/

Double or Float /\d+\.\d+/

Datetime /\d{2,4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2}/

Phoneno /\(?\d{3}\)?[-]?\d{3}-\d{4}/

Zipcode /\d{5}(-\d{4})/

Email /[\w\.-]+@[\w\.-]+/

Ipaddress /\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/

Regular expression /Any valid Perl 5 regular expression/
18 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
For example, to look for interfaces where $ifIndex < 10, specify int as the <evalType> for the $ifIndex variable. By

default, all variables are evaluated as strings in filter expressions.

Example

Trigger-Variables:

$ifName String

$ifIndex /\(?\d{3}\)?[-]?\d{3}-\d{4}/ string

$phoneno Word

Example

Trigger-Variables:

$ifName /FastEthernet.*/

Trigger-Template:

interface [[$ifName]]

Issue Section Attributes

Use one or more optional Issue Sections to generate custom NetMRI

issues based on criteria encountered in the processing of the script.

NetMRI uses Issues to quantify and report problems and events

across the network. In the Network Analysis –> Issues tab, the

Network Scorecard shows the results of the daily analysis process

and all issues generated for the latest time period. Issues can also be

filtered. More than one Issue may be referenced within a CCS script.

They can use variable and template definitions to define patterns of

interest, and they can both use filter expressions to further examine

output to decide when something must be done (the Issue is

reported). Three types of Issues are reported by NetMRI, along with a

special fourth CCS Issue classification.

•Errors are important issues that may affect the smooth operation of

the network. Generally, such issues are clear signs that something is

wrong.

• Warnings are intermediate level issues that should be addressed after the errors have been corrected. A

warning may not be a real problem, depending on the design and operation of the network.

• Info issues are provided for information, and typically alert you to minor events that may or may not indicate

a problem.

• CCS issues are directly related to the execution of a CCS script. CCS uses the Issues page for notification

after a script executes. An example is Invalid User Account, which reports the mistaken use of a non-Admin

user account or an incorrect login for a device.

Issue sections support the following attributes:

Attribute Status Purpose

Issue: (required) issue name

Issue-ID: (required) system-wide unique issue ID

Issue-Severity: (required) “Error”, “Warning” or “Info”

Issue-Template: (required*) identifies patterns in the output stream

Issue-Filter: (required*) defines when the issue should be generated

Issue-Details: (required) detailed issue data

Simple Issue

Script
Section

Action
Section

D
ev

ic
es

/
D

ev
ic

e-
G

ro
up

Login

Commands

CLI Output

CLI
Output

Issue
Section
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 19

Job Automation with CCS Scripting
*Issue-Template and/or Issue-Filter must exist in a Trigger section.

The list of attributes in the Issues section declares the issue that will be generated should a positive match occur,

which will appear in the Network Analysis –> Issues page and in configured notifications.

Issue:

Used In: Issue sections

Status: Mandatory

Defines the custom issue (previously defined in the NetMRI set) to be generated should a positive match result. This

title appears as the banner for the Issue when it appears in NetMRI.

Example

All text after the Issue: statement defines the Issue type:

Issue: Process All User Accounts

Issue-Description:

Used In: Script sections

Status: Optional

Defines the description for a custom issue.

Example

Issue-Description: The new firewall rule fails to be written when attempting provisioning
by SDC. Check your device configuration and admin permissions.

Issue-Details:

Used In: Issue sections

Status: Mandatory

The mandatory Issue-Details attribute defines the name/value pairs to be included in the description of the issue

that gets generated. These names are established when the issue template is originally created in the Configuration

Management –> Job Management side tab –> Custom Issues page.

Example

Issue-Details:

Host $IPAddress

Name $Name

Issue-Filter:

Used In: Issue sections

Status: Mandatory

CCS requires the Issue-Filter attribute if the Issue-Template attribute is not provided in the script. The

Issue-Filter applies additional criteria to determine if the issue should be generated. It uses the same logical

operators as for Script-Filters and other attributes.

Issue-Description: (optional) issue description

Issue-Variables: (optional) define/store values extracted from output stream
20 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Standard CCS Attributes
Example

Note the use of Boolean operators in the filter attribute:

Issue-Filter:

$nofireissue ne "yes" and

($do_domain eq "yes" and $have_new_domain ne "yes") or

($do_nameserver eq "yes" and $have_new_nameserver ne "yes") or

($do_netbios_ns eq "yes" and $have_new_netbios_ns ne "yes") or

($do_tacacs eq "yes" and $have_new_tacacs ne "yes") or

($do_tftp eq "yes" and $have_new_tftp ne "yes") or

($do_time eq "yes" and $have_new_time ne "yes")

Issue-ID:

Used In: Script sections

Status: Mandatory

The Issue-ID value must be defined in NetMRI’s Custom Issue list (Config Management –> Job Management tab –>

Custom Issues) before it can be called out by a CCS script.

Example

Issue-ID: InvalidUserAccount

Issue-Severity:

Used In: Issue sections

Status: Mandatory

The Issue-Severity attribute defines the importance of the issue in the script. Valid choices are Error, Warning and

Info. Issue-Severity influences the generated Issue’s position in the NetMRI Issues List due to the penalty weights

assigned by the appliance. For example, a severity of Error yields a placement with other critical Errors closer to the

top of the Issues List than Warnings and Informational Issues.

Example

Issue-Severity: Error

Issue-Template:

Used In: Issue sections

Status: Mandatory

A text snippet that defines the syntax to match against the output for the issue reporting. When NetMRI’s CCS

scripting engine receives the output from the executed command sequence, it interprets the data against the

template, which acts as a regular expression to determine whether the pattern matches or does not.

Example

Issue-Template:

username $username password 0 .*

This example shows Cisco but can be for any vendor supported by NetMRI.

Issue-Variables:

Used In: Issue sections

Status: Optional
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 21

Job Automation with CCS Scripting
You can define variables for matching in the Issue-Variables attribute. Doing so helps build the patterns of

interest that the script searches for in the output. CCS interprets the Issue-Variables and Issue-Template

attributes as regular expressions that are applied to the output stream. Many CCS scripts will not define

Issue-Variables attributes as frequently as other attribute types. The below example declares a Boolean

statement that if a set of three well-known variables are set to a certain state ($nofireissue does not equal “Yes,”

and the variables $do_domain eq "yes" equals “Yes” and $have_new_domain does not equal “Yes,” then an

issue will be reported.

Example

Issue-Filter:

$nofireissue ne "yes" and

($do_domain eq "yes" and $have_new_domain ne "yes")

CCS Data Archive and Export

CCS Data Archive/Export enables archive and export functions for any information available via the CLI. You can send

any command output to an external file, which is automatically readable through NetMRI Job Viewer from a file name

that you specify.

Data archiving takes place using the ARCHIVE keyword. Archived data can be exported from NetMRI using HTTP.

ARCHIVE

CCS attributes Action-Commands and Trigger-Commands support the ARCHIVE keyword, used to save the output

of various CLI commands into one or more files. In its simplest form:

Action-Commands:

ARCHIVE: sh ver

The ARCHIVE keyword creates a file named device_id-1.log for each device. The files can be viewed in the Files tab of

NetMRI’s Job Viewer.

The keyword can be followed by an optional file name and should precede all commands for the archived output:

Action-Commands:

ARCHIVE (config.txt): show running-config

stores the output of the show running-config command in the file config.txt.

If a job runs against two or more devices and the script specifies a static file name, all iterations will use the same file

name and only one set of data will be present in the Zip archive, containing the last device’s output, which will have

overwritten all previous output. At the end of the job, the Zip file contains a file with a single set of data from one

device (e.g. the last device that the script was run against). This is not particularly helpful.

Use variables to dynamically specify the name of the file:

Action-Commands:

ARCHIVE ($ipaddress.txt): show interface summ

stores the output of the show interface summ command in a series of files representing each of the devices against

which the script runs after the script-filter is applied.

Output from multiple commands can be stored in the same file:

Action-Commands:

ARCHIVE ($ipaddress.txt): show interface summ

ARCHIVE ($ipaddress.txt): show running-config

Two successive ARCHIVE directives in the same attribute store the output of the commands show interface summ and

show running-config in the series of files named <$ipaddress>.txt.
22 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

CCS Scripting Commands
At the end of a job, files created using the ARCHIVE keyword are placed in a Zip file. You can view the files and

download the Zip file in the Files tab of the Job Viewer. If you use a variable to define the file names generated by the

script, each device in the Job has its own separate output file which is present in the Zip file.

CCS Data Export

The most recent archive Zip file is found in the Files tab in the Job Viewer, and is placed in a global location where it

can be accessed via an HTTP transaction. Details are as follows:

Request Info
URL: //netmri/ccs/tx/common/GetArchive.tdf
Parameters: N/A

Response Info
Content-Type: application/zip
Content-Disposition: NetMRI_CCS_Archive.zip
Content: The most recent ARCHIVE.zip file

Use this mechanism to export the most recent archive.zip file to an external application, or a server, on a scheduled

basis using a tool such as wget.

CCS Scripting Commands

Along with CCS attributes and sections, CCS scripting provides a limited number of discrete command functions.

DEBUG

Provides a simple tool to determine whether a statement in a script will run before you actually execute the script.

The Process log displays DEBUG can be used in Action-Command attributes and Trigger-Command attributes.

Example

Trigger-Commands:

config terminal

interface $ifName

DEBUG: duplex auto

exit

exit

When the script statement containing the DEBUG executes, a special debug icon appears next to the statement. This

indicates that the statement would have run if it had not been removed from execution with the DEBUG: keyword. This

tool is useful for cases where you are generating multiple iterations of a particular command and need to see the

execution pattern.

Note: Because CCS does not have an integrated development environment, we recommend using DEBUG

statements to check for endless loops and logic errors before executing scripts against a live network.
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 23

Job Automation with CCS Scripting
GET-CONFIGS

The GET-CONFIGS directive An optional [MODE] can be specified to the right of the ":" to indicate whether

synchronous or asynchronous behavior is desired. Valid values for [MODE] are "synchronous" and "asynchronous".

If not specified, [MODE] defaults to "synchronous". Synchronous behavior implies that the script will block until the

GC operation has completed (i.e. the operation terminates with an OK status) or abort if an error is encountered (i.e.

the operation terminates with an Error status). Asynchronous behavior implies that the script will continue processing

after the GC request is initiated. An example follows:

Example

Ensure that NetMRI has the most up-to-date configurations
on file. The script will block until the Get Configs operation has
completed since the default synchronous mode is used.

Ensure that NetMRI has the most up-to-date configurations on file. The script
will block until the Get Configs operation has completed since the
synchronous mode is used.

GET-CONFIGS:

Modify the interface description for Fa0/1.

config t
interface Fa0/1

description Get Configs Test
end

Request another Get Configs operation to audit the above change. Since this
is the end of the script and there is no need to block until the Get Configs
operation has completed, the asynchronous mode is used.

GET-CONFIGS: asynchronous

After script execution completes, output similar to the following can be seen in the Status Log of the Job Details

Viewer:

+++ 1. Action: Get Configs Test

+++ 1. [Action-Commands]
++ Requesting on demand configuration collection (synchronous) OK
+++ Received TrackingID 1 .. OK
+++ Getting the status of TrackingID 1 PENDING
+++ Sending 'Keep Alive CR/LF' ... OK
+++ Getting the status of TrackingID 1 QUEUED
+++ Sending 'Keep Alive CR/LF' ... OK
+++ Getting the status of TrackingID 1 QUEUED
+++ Sending 'Keep Alive CR/LF' ... OK
+++ Getting the status of TrackingID 1 RUNNING
+++ Sending 'Keep Alive CR/LF' ... OK
+++ Getting the status of TrackingID 1 OK
+++ 1. Sending 'config t' .. OK
+++ 1. Sending 'interface Fa0/1' OK
+++ 1. Sending 'description Get Configs Test' OK
+++ 1. Sending 'end' ... OK
+++ Requesting on demand configuration collection (asynchronous) OK
+++ Closing session .. OK
*** Successfully ran configuration command script ***
24 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

CCS Scripting Commands
LOG {-INFO, -WARNING, -ERROR, -DEBUG}

The LOG directive logs a message of the severity

specified by the script. Four levels of severity can

be stated, in escalating order: INFO, WARNING,

ERROR and DEBUG.

LOG can be used in Action-Command attributes

and Trigger-Command attributes. If you try to use

LOG in other attributes, it will generate a script

Error and appear in red in the Job Details Viewer’s

Process Log page.

Log messages are written to the Custom Log tab in the Job Details Viewer window.

Example

Action-Commands: { $Vendor eq "Cisco" and $type eq "Router" }

ARCHIVE ($ipaddress.txt): show int summ

LOG-INFO: Router's interface list has been written to file

EXPR

Command-line utility to evaluate regular expressions. EXPR can be used in Action-Command attributes and

Trigger-Command attributes. EXPR uses a set of arithmetical and Boolean operators to perform simple evaluations

between two arguments. EXPR is also used to set the integer value.

Example

Add 1 to the variable $counter

expr: $counter = $counter + 1

Compute the remainder of the variable $counter divided by 2

expr: $remainder = $counter % 2

Assign the integer value to the variable $name

expr: $name = 6

ARG1 | ARG2 ARG1 if it is neither null nor 0, otherwise ARG2

ARG1 & ARG2 ARG1 if neither argument is null or 0, otherwise 0

ARG1 < ARG2 ARG1 is less than ARG2

ARG1 <= ARG2 ARG1 is less than or equal to ARG2

ARG1 = ARG2 ARG1 is equal to ARG2

ARG1 != ARG2 ARG1 is unequal to ARG2

ARG1 >= ARG2 ARG1 is greater than or equal to ARG2

ARG1 > ARG2 ARG1 is greater than ARG2

ARG1 + ARG2 arithmetic sum of ARG1 and ARG2

ARG1 - ARG2 arithmetic difference of ARG1 and ARG2

ARG1 * ARG2 arithmetic product of ARG1 and ARG2

ARG1 / ARG2 arithmetic quotient of ARG1 divided by ARG2

ARG1 % ARG2 arithmetic remainder of ARG1 divided by ARG2
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 25

Job Automation with CCS Scripting
The getListValue() Function

A function for a CCS script to look up values in a list. The list must be installed in the NetMRI appliance (Configuration

Management –> Job Management tab –> Lists page) to be referenced by scripts. For the given list name and the first

specified column in the lookup, CCS finds the first row containing a defined matching value, and fetches the

corresponding row’s value from another data column in the same data record.

The parameters in getListValue() are the following:

getListValue(<list_name> <key_column> <key_value> <value_lookup_column> <default>)

Example

Action-Commands:{$location eq "West"}

SET: $syslog1 = getListValue(NetworkServers,Server,WS1,IPAddr,null)

SET: $syslog2 = getListValue(NetworkServers,Server,WS2,IPAddr,null)

Above, an Action-Command is called by the script if the value in the variable $location is equal to “West.” Then,

the script declares two SET variables, which use the getListValue() to fetch specific values from the

NetworkServers list. As an example, that list has three data columns: Location, Server and IPAddr.

The variable $syslog1 is written with the value 220.11.113.246, because the script is told to open the list and

search for the value WS1 in the list’s column labeled Server.

Finding WS1 in the first row of the list, the script is directed to extract the value in that row’s corresponding IPAddr

column and write that IP value into $syslog1. The result is that the variable $Syslog1 = 220.11.113.246.

<list_name> The name of the list in the NetMRI Lists page.

<key_column> The list column to search for the matching value in <key_value>. The specified

column can be any column in the table.

<key_value> The value to search for in the first <key_column> list column.

<value_lookup_column> The location in the matching data record, in the list, to look up the value.

<default> The default message should no matching value appear in the list for

<key_value>. If specifying no <default>, the argument null must be used.

An example of a default message would be NOT_FOUND.

Location Server IPAddr

West WS1 220.11.113.246

Southwest WS3 210.15.200.246

Asiapac AS1 132.55.210.246

Northeast NS1 212.46.155.246

East NS2 212.46.156.246

Midwest MW1 210.15.205.246

Southeast NS3 212.46.154.246

Midwest MW2 210.15.206.146

West WS2 220.11.114.246

South SS1 180.99.99.246

EMEA EM1 133.10.1.246
26 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

CCS Scripting Commands
The second variable $syslog2 works in similar fashion, getting written with the value 220.11.114.246. When the

script matches WS2 in the list, the script is told to extract the value in that row’s corresponding IPAddr column and

write that into $syslog2.

Note: For all list operations, should you need to access a list as part of script operation, make sure that all changes

to the list are saved (adding and deleting rows, changing column header names or moving columns, adding

new data columns) before attempting to access the list again.

Another example, showing an entire script that updates the host names of devices from a list using old and new host

names:

Script-Filter:

$Vendor eq "Cisco"

########################

Action:

Get Device

Action-Description:

Get the old Host Name from the list and replace it with the new one.

Action-Commands:

 SET: $new = getListValue(my_newhostname,old_name,$name,newhostname,NOTFOUND)

Action-Commands:{$new ne “NOTFOUND”}

config t

hostname $new

end

wr mem

The list my_newhostname could be of any length; the example here is quite brief:

PRINT

The PRINT keyword allows the printing of simple text strings (similar to the C “printf” command) and the printing of

values within variables in CCS scripts to output text files. Action-Command attributes and Trigger-Command

attributes may use the PRINT keyword. You can view file output in the Files tab in the Job Viewer. You can append

successive PRINT outputs to the same file. You can specify variables output using the $<variable_name> directive.

Avoid using other special characters as they may conflict with tokens used by the CCS scripting engine. You can use

the following special characters in the file names: [a-zA-Z0-9_-].

Examples

PRINT: This is the output of the show running-config command

The statement in quotation marks is written to an automatically-named file <device_id>-1.log.

You can also direct the output of the PRINT keyword to a specific filename:

old_name newhostname

Wan-Router Wan-Router2

router-10-66-20-66 EMEA_gateway

router-10-66-20-225 Asiapac_gateway
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 27

Job Automation with CCS Scripting
PRINT (config_listing.txt): This is the output of the show running-config command

The statement in quotation marks is written to a specified file named config_listing.txt.

Similar to the ARCHIVE keyword, you can use variables to dynamically specify file names:

PRINT ($device_devicename.txt): This is the output of the show running-config command

The statement writes a series of files to specified filenames for each of the devices against which the script

executes, after the script-filter is applied.

PRINT can be used to append successive notes into the same output file:

Action-Commands:

PRINT ($device_devicename.txt): This is the output of show running-config

ARCHIVE ($device_devicename.txt): show running-config

PRINT ($device_devicename.txt): Expect this to be the same as show startup-config

ARCHIVE ($device_devicename.txt): show startup-config

In this case <$device_devicename>.txt files contain the text This is the output of show running-config
followed by the output of an executed show running-config command, followed by another text statement

Expect this to be the same as show startup-config followed by the output of a show startup-config

command.

You can use PRINT to output the contents of variables to an external file:

Action-Commands:

PRINT ($device_devicename.txt): $device_devicename is a $model

This script directive prints the contents of two variables to the file <$device_devicename>.txt.

SKIPERROR

The SKIPERROR directive turns off error handling for script attributes when an error may appear from the acted-upon

device, potentially preventing further job execution. You may issue SKIPERROR: on for one part of a script, thereby

disabling error handling, and re-enable error handling again by issuing a second SKIPERROR: off directive.

SKIPERROR can be used in Action-Command attributes and Trigger-Command attributes.

Example

Turn off error handling

SKIPERROR: on

<further script execution here>

Turn error handling back on

SKIPERROR: off

SLEEP

The SLEEP directive pauses script execution for a specified number of seconds. SLEEP can be used in

Action-Command attributes and Trigger-Command attributes.

Example

Sleep for one minute

sleep: 60
28 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

CCS Scripting Commands
Commenting CCS Code

To ensure your scripts are maintainable, we recommend the liberal use of comments. All comments in CCS scripts are

denoted using the hashtag (#) symbol as the first character in a line. An example:

#---

The $ifName value extracted by the first trigger will be used in this command.

Variables are globally scoped and referenced by any part of the script as needed.

#---

Multi-line comments can contain any text and are treated as comments within /* and */ delimiters, as follows:

/*
This is a multi line comment. Use it to explain all of the
glorious details of the script you just created.
*/

Looping with CCS Scripting

As previously noted, Trigger-Commands are the looping mechanism

for CCS scripts, though simple IF-THEN logical constructs can be

defined in other attributes. The sample script in this section uses two

simple iterations of automated Cisco command line operations to

illustrate nested loops in CCS.

You choose the device, devices or device group against which the

script runs. Once that’s done, the script executes beginning with the

script-filter, which filters out all devices in the chosen device

group except for specific router model types.

Script-Filter:

$Vendor eq "Cisco" && $Model in ["2811", "2821",
"2621XM"]

The single Action section executes a simple loop of Cisco CLI

commands against every device that matches the Script-Filter.

The output is contained in a memory buffer, log messages written and

the output is also written to a file using the ARCHIVE command. Note

that the Log and ARCHIVE directives do not appear in the Process Log.

Action-Commands: { $type eq "Router" }

ARCHIVE ($ipaddress.txt): show int summ

LOG-INFO: Router's interface list has been
written to file

sh int

LOG-INFO: issued another sh int command for full interface config

Output-Triggers:

Show Ethernet Interfaces

Then, the Output-Trigger is called for each matching device. This represents the nested loop, which starts by

establishing a Trigger-Template and a Trigger-Variable, which uses a regular expression. The trigger matches

the template against the output from the sh int command. For matching devices, at least one interface will match the

template. In the first trigger execution, a single template match appears, showing FastEthernet0/0 in red. Then,

using a Trigger-Command attribute, the script issues a sh int $ifName command (note the use of the variable)

and appends the response output into the associated text file.

Trigger:

Show Ethernet Interfaces

Trigger-Variables:
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 29

Job Automation with CCS Scripting
$ifName "/FastEthernet[^]*/"

Trigger-Template:

[[$ifName]] is .+, line protocol is .+

Trigger-Filter:

$ifName eq "FastEthernet0/0" | $ifName eq "FastEthernet0/1"

Trigger-Commands:

ARCHIVE ($ipaddress.txt): sh int $ifName

LOG-INFO: Router's Ethernet port configs have been written to file

As shown in the Job Details Viewer example, a second iteration of the

loop executes for the sh int $ifName command on the router

(because the router has two Ethernet ports) and the text output is

appended to the same text file. The output from the original sh int

summ command and from the two sh int FastEthernet commands is

concatenated to the same file. The trigger executes at least once for

any router device whose Ethernet interface CLI name resembles

FastEthernet[^]* and in this case executes twice.

It’s a simple matter, on a Catalyst switch with 24 or 48 ports, and a

slightly modified script, to automatically execute the loop 24 or 48

times.

First, change the Script-Filter specifications:

Script-Filter:

$Vendor eq "Cisco" && $Model in ["catalyst295024"]

Note that all arguments are case-sensitive. In this case, if you wrote “Catalyst295024” the script would skip all

switch devices this it was intended to run against, because $Model wouldn’t find a match.

Action-Commands: { $type eq "Switch" }

Then, to enforce the loop automatically, simply remove the Trigger-Filter, because you don’t need it given that

all ports on the device type are FastEthernet0/* (also, you may have either a Trigger-Filter or a

Trigger-Template or both, depending on the script; you must have at least one of the two):

Trigger-Filter:

$ifName eq "FastEthernet0/0" | $ifName eq "FastEthernet0/1"

The same sh int commands execute for every port on the chosen devices; the Status Logs and Process Logs, and the

written text file, are substantially longer. For a 24-port Catalyst, each device writes out a file nearly 700 lines in length.

Using Filtering on Scripted Commands

A recommended practice for trigger filtering is to avoid filtering against an entire Trigger. Filtering is more effective

when you perform it against individual commands issued by Action sections.

Well-Known Variables

Among the well-known variables that can be called in any CCS (or Perl) script include the following (sample values

enclosed in quotemarks):

$assurance = "99";

$batch_id = “262”

(Returns the Job ID value that appears in the Job History UI.)

$community = "mysnmp";

$contextname = "";

$device_id = "21";

$ipaddress = "220.10.110.5";

Simple Trigger

Script
Section

Action
Section

D
ev

ic
es

/
D

ev
ic

e-
G

ro
up

Login

Trigger

Output

Output

sh int
$ifname

sh int summ
30 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Scripting Example
$model = "871";

$name = "QAlabrtr11";

$syscontact = "QAEast's lab; Floor 2";

$sysdescr = "Cisco IOS Software, C870 Software (C870-ADVIPSERVICESK9-M), Version
12.3(8)YI2, RELEASE SOFTWARE (fc1) Synched to technology version 12.3(10.3)T2
Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2005 by Cisco
Systems, Inc. Compil";

$syslocation = "QA lab right bottom soho router";

$sysname = "QAlabrtr11.qanet.com";

$type = "Router";

$vendor = "Cisco";

$version = "12.3(8)YI2";

Scripting Example

This section provides a complete script example that executes a Cisco Connectivity Fault Management feature update

job on a series of Cisco 3400 switches. Note the extended series of configuration commands in the trigger

process-CFM.

###

Export of Script: CFM Update

Script-Level: 2

Script-Category:

###

Script:

CFM Update

Script-Description: A script to dynamically configure CFM on switches

Script-Filter:

$Vendor eq "Cisco" and $Model like /3400/

#######

Action:

Determine CFM

Action-Description:

Do a show CFM to determine if a device already has CFM.

Action-Commands:

SET: $cfm_exists = "yes"

show ethernet cfm maintenance-points local

Output-Triggers:

Check CFM

########

Trigger:

Check CFM

Trigger-Description:

If CFM is already enabled on the device, we will update the cfm_exists variable to yes

Trigger-Template:

Local MEPs\: None
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 31

Job Automation with CCS Scripting
Trigger-Commands:

SET: $cfm_exists = "no"

#######

Action:

Get CFM Variables

Action-Description:

Perform a "show run interface Gi0/1" to get the existing VLAN information.

Action-Filter:

$cfm_exists eq "no"

Action-Commands:

sho run interface Gi0/1

SET: $correct_vlan = "no"

SET: $UpdateMade = "no"

Output-Triggers:

Process CFM

Incorrect VLAN

#######

Trigger:

Process CFM

Trigger-Description: Parse the output of the show run to get the vlan numbers.

Trigger-Variables:

$vlan integer

Trigger-Template:

switchport trunk allowed vlan 2[[$vlan]],3\d+

Trigger-Commands:

SET: $correct_vlan = "yes"

SET: $UpdateMade = "yes"

config t

ethernet cfm ieee

ethernet cfm global

ethernet cfm traceroute cache

ethernet cfm traceroute cache size 200

ethernet cfm traceroute cache hold-time 60

ethernet cfm mip filter

ethernet cfm alarm notification all

ethernet cfm domain Slight level 4

service vlan-id 2$vlan vlan 2$vlan

mep mpid 6$vlan

continuity-check

continuity-check interval 1s

continuity-check loss-threshold 2

mip auto-create

service vlan-id 3$vlan vlan 3$vlan

mep mpid 7$vlan

continuity-check
32 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

Scripting Example
continuity-check interval 1s

continuity-check loss-threshold 2

mip auto-create

ethernet cfm lck link-status global

disable

ethernet cfm ais link-status global

disable

ethernet evc 2$vlan

oam protocol cfm svlan 2$vlan domain Slight

ethernet evc 3$vlan

oam protocol cfm svlan 3$vlan domain Slight

Int g0/1

No service-policy input CoS

No service-policy output parent-shape-1Gb/s

No l2protocol-tunnel

exit

No policy-map parent-shape-1Gb/s

No policy-map child-shape-100Mb/s

No policy-map CoS

No policy-map TXQ

policy-map child-shape-100Mb/s

class class-default

shape average 100000000

policy-map parent-shape-1Gb/s

class class-default

shape average 1000000000

service-policy child-shape-100Mb/s

policy-map 100Mb/s

class class-default

trigger-commands:{$Version like /12\.2\(55\)/}

police cir 100m conform-action transmit exceed-action drop

trigger-commands:{$Version not like /12\.2\(55\)/}

police cir 100m pir 100m conform-action transmit exceed-action drop violate-action drop

trigger-commands:

Int g0/1

Service-policy input 100Mb/s

Service-policy output parent-shape-1Gb/s

ethernet cfm mep domain Slight mpid 3$vlan vlan 3$vlan

cos 7

ethernet cfm mep domain Slight mpid 2$vlan vlan 2$vlan

cos 7

no ethernet cfm ais link-status

########

Action:

End and Write Memory
For NetMRI 6.x and 7.x Infoblox CCS Scripting Guide 33

Job Automation with CCS Scripting
Action-Description:

End and Write Memory only if we entered config mode.

Action-Commands:{$UpdateMade eq "yes"}

end

DEBUG:write mem

########

Issue:

Incorrect VLAN

Issue-ID:

Incorrect_VLAN_CFM

Issue-Severity:

error

Issue-Description:

This device could not be upated by the CFM script

Issue-Filter:

$correct_vlan eq "no"

Issue-Details:

Host $Name

Address $IPAddress
34 Infoblox CCS Scripting Guide For NetMRI 6.x and 7.x

	Job Automation with CCS Scripting
	About CCS
	Tools for Using CCS
	When Errors Occur

	CCS Script Hierarchies
	CCS Variables Usage
	Setting Variables in Command Attributes
	Using List Variable Types
	Logical Expressions and Regular Expressions

	Standard CCS Attributes
	Script Section Attributes
	Action Section Attributes
	Trigger Section Attributes
	Issue Section Attributes

	CCS Data Archive and Export
	ARCHIVE
	CCS Data Export

	CCS Scripting Commands
	DEBUG
	GET-CONFIGS
	LOG {-INFO, -WARNING, -ERROR, -DEBUG}
	EXPR
	The getListValue() Function
	PRINT
	SKIPERROR
	SLEEP
	Commenting CCS Code
	Looping with CCS Scripting
	Using Filtering on Scripted Commands
	Well-Known Variables

	Scripting Example

