
DEPLOYMENT GUIDE

Automate Infoblox
Infrastructure Using Ansible

Automate Infoblox Infrastructure Using Ansible (February 2021) 1 of 20

Table of Contents

Overview 3

Need for Network Automation 3

Ansible 3

Ansible Offerings 3

Usage 3

Key terms 4

Infoblox Collections 4

Ansible-Infoblox Integration 5

Modules 5

Plugins 5

Use Cases 5

Manage DNS Records, Networks and IP Addresses for VMs 5

Automate Deployment of Virtual Infoblox Appliances 5

Deployment 6

Requirements 6

Initial Setup 6

Ansible 6

Picking an Ansible Version 6

Installation 7

Verify Installation 7

Inventory 7

Infoblox 7

Supported Versions 7

Cloud Admin user (Optional) 8

Ansible-Infoblox Integration 10

Getting Started 10

Installing the Infoblox Collections 10

Installation from Ansible Galaxy 10

Installation from Git 11

Writing the Playbooks 11

Create a Network View 12

Create a Network 12

Create a Host Record 13

Create an A Record 13

Automate Infoblox Infrastructure Using Ansible (February 2021) 2 of 20

Add entry for a Grid Member 14

Delete A Record 14

Delete Network 15

Delete Member 15

Sample lookup plugin 16

Preparing your Playbooks 16

Running your Playbooks 16

URI Module 16

Example URI module usage to start DNS services on the Grid 17

Conclusion 17

Additional Information 18

Appendix 18

Troubleshooting 18

NIOS Module Command Help 18

Automate Infoblox Infrastructure Using Ansible (February 2021) 3 of 20

Overview
Environments are becoming extremely dynamic as virtualization of hardware becomes more and more

prevalent. To keep up with that, many organizations depend heavily on tools to automate, or orchestrate,

tasks as much as possible.

Automation is an essential and strategic component of modernization and digital transformation. Modern,

dynamic environments need a new type of management solution that can improve speed, scale and stability

across the enterprise IT environment.

Need for Network Automation

Traditionally, IP Address Management (IPAM) has been done using spreadsheets. The network administrators

maintained the IP address landscape, where they manually added or deleted IP addresses from the

spreadsheets whenever hosts are added or deleted from the network. That doesn’t work in today’s dynamic

environments and makes the entire IPAM lifecycle management tedious and prone to error. In large

organizations, end-users might have to submit internal tickets for IP address record fulfilments that can take

hours, if not days. And then there is the cleanup – again, a time consuming and error-prone effort. The result?

These legacy approaches often delay workload deployments and diminish the automation and orchestration

advantages that organizations wanted.

Ansible
Ansible is a simple, yet powerful IT automation engine that thousands of companies are using to drive

complexity out of their environments and accelerate DevOps initiatives.

It is used for IT tasks such as configuration management, application deployment, intra-service

orchestration and provisioning. It is both light weight and simple to deploy, manage and use. The Ansible

platform makes it easy for administrators and developers to automate many tasks, including applying

updates to machines on the network to managing devices on the network.

Ansible Offerings

Ansible has three offerings:

• Ansible Project: A free, open-source automation product that is built by the community

(ansible.com/community) for the benefit of the community.

• Ansible Engine: Open-source technology that organizations can use to access the tools and

innovations available from the underlying Ansible technology in a hardened, enterprise-grade

manner. Ansible Engine relies on the massive, global community behind the Ansible project, and

adds in the capabilities and assurance from Red Hat.

• Ansible Tower: An enterprise offering which gives you a graphical interface and enables

integration with other services and tools. Tower gives permission control and will also save a record

of all Ansible playbook activity, useful for auditing purposes.

In this deployment guide, we use the Ansible project.

Usage

You can leverage the capabilities of Ansible in multiple ways:

• Ad-Hoc: Issue ansible tasks direct from the command line. This is a good place to start to

understand the basics of what Ansible can do prior to learning the playbooks language – ad-hoc

commands can also be used to do quick things that you might not necessarily want to write a full

playbook for.

• Playbooks: These are automation scripts. Playbooks are Ansible’s configuration, deployment, and

orchestration language. They can describe a policy you want your remote systems to enforce, or a

set of steps in a general IT process.

• Automation Framework: Requires the Ansible Tower.

https://www.ansible.com/products/tower

Automate Infoblox Infrastructure Using Ansible (February 2021) 4 of 20

• Check Mode: An option for running ad-hoc commands or playbooks without making changes.

This deployment guide walks you through working with playbooks.

Key terms

• Controller Machine: The machine where Ansible is installed, responsible for running the

provisioning on the servers you are managing.

• Inventory: An initialization file that contains information about the servers you are managing.

• Host: In Ansible, a host is a remote machine that is assigned to individual variables and they are

further grouped together. Each host has a dedicated name or unique IP address to make its

identification easy and quick. They can be given simple port number too if you don’t have to access

them over SSH connection.

• Ansible automation language: The structure used when writing playbooks and other resources

for Ansible. The Ansible automation language uses YAML and is intended to be both human and

machine readable.

• Playbook: The entry point for Ansible provisioning, where the automation is defined through tasks

using YAML format. These are plain text files written in the Ansible automation language which

describe the intended end-state of a deployment or task being executed.

• Play: A provisioning executed from start to finish is called a play. In simple words, execution of a

playbook is called a play.

• Task: A block that defines a single procedure to be executed, e.g. Install a package. It is used

within a play to call modules and run-in order.

• Module: Also referred to as ‘task plugins’ or ‘library plugins’, a module typically abstracts a system

task, like dealing with packages or creating and changing files. Ansible has a multitude of built-in

modules, but you can also create custom ones.

• Role: A pre-defined way for organizing playbooks and other files in order to facilitate sharing and

reusing portions of a provisioning.

• Facts: Global variables containing information about the system, like network interfaces or

operating system.

• Plug-ins: They are the special pieces of code that help to write code quickly. Plug-ins automate the

development tasks and help to speed up the deployment work to the maximum level.

• Ansible Galaxy: This refers to the Galaxy website where users can share roles, and to a command

line tool for installing, creating and managing roles.

• Collections: An Ansible Content Collection, or “collection” for short, is a new directory structure,

and complementary tooling in Ansible to consume content from that structure. This new structure

accommodates multiple types of content, such as modules, plugins, roles, and others in a singular

portable format.

Infoblox Collections

The Infoblox NIOS Collection for Ansible Automation Platform is a package of modules and plugins that

allows managing Infoblox Network Identity Operating System (NIOS) objects and functions through APIs

leveraging Ansible playbooks.

Dynamic inventory is one of the powerful features in Red Hat Ansible Tower, which allows Ansible to query

external systems and use the response data to construct its inventory.

The combined Infoblox/Red Hat solution enables network professionals to overcome the burden of

maintaining a static registry of devices and gain a centralized and highly efficient way to manage DNS,

DHCP, and IPAM (DDI) automation of VMs and containerized workloads deployed across multiple

platforms.

https://yaml.org/
https://galaxy.ansible.com/
https://github.com/infobloxopen/infoblox-ansible

Automate Infoblox Infrastructure Using Ansible (February 2021) 5 of 20

Ansible-Infoblox Integration
The Infoblox NIOS Collection for Ansible provides 16 modules and 4 plugins included with Ansible 2.9. It

enables networking teams to leverage Ansible NIOS modules and plugins to automate Infoblox Core Network

Services for IPAM, DNS, and inventory tracking for workloads deployed across multiple platforms. It frees

network administrators from frequent repetitive requests or tasks with high error rates, including IP address

assignments, DNS record creation, and cleanup of everything once a resource is no longer needed.

The nios_modules collection provides modules and plugins for managing the networks, IP addresses, and

DNS records in NIOS. This collection is hosted on Ansible Galaxy under infoblox.nios_modules.

Modules

• nios_a_record – Configure Infoblox NIOS A records

• nios_aaaa_record – Configure Infoblox NIOS AAAA records

• nios_cname_record – Configure Infoblox NIOS CNAME records

• nios_dns_view – Configure Infoblox NIOS DNS views

• nios_fixed_address – Configure Infoblox NIOS DHCP Fixed Address

• nios_host_record – Configure Infoblox NIOS host records

• nios_member – Configure Infoblox NIOS members

• nios_mx_record – Configure Infoblox NIOS MX records

• nios_naptr_record – Configure Infoblox NIOS NAPTR records

• nios_network – Configure Infoblox NIOS network object

• nios_network_view – Configure Infoblox NIOS network views

• nios_nsgroup – Configure Infoblox DNS Nameserver Groups

• nios_ptr_record – Configure Infoblox NIOS PTR records

• nios_srv_record – Configure Infoblox NIOS SRV records

• nios_txt_record – Configure Infoblox NIOS txt records

• nios_zone – Configure Infoblox NIOS DNS zones

Plugins

• nios_inventory – List all the hosts with records created in NIOS

• nios_lookup – Look up queries for NIOS database objects

• nios_next_ip – Returns the next available IP address for a network

• nios_next_network – Returns the next available network addresses for a given network CIDR

Use Cases

Manage DNS Records, Networks and IP Addresses for VMs

Ansible enables the automation for creating and deleting VM’s that are deployed across multiple platforms.

Integration with Infoblox is powered by the NIOS module in Ansible that provides the framework for

managing the networks, IP addresses, and DNS records in NIOS.

Automate Deployment of Virtual Infoblox Appliances

Organizations can use Ansible to automate the creation (and deletion) of virtual Infoblox appliances. You

can leverage this module for autoscaling grid members based on DNS traffic.

https://docs.ansible.com/ansible/2.9/modules/list_of_net_tools_modules.html#nios

Automate Infoblox Infrastructure Using Ansible (February 2021) 6 of 20

Deployment
Ansible is an agentless automation tool that by default manages machines over the SSH protocol. You only

need to install it on one machine (which could easily be a laptop) and it can manage an entire fleet of remote

machines from that central point.

Requirements

Ansible is available for Linux based operating systems (include MacOS) and can be installed on physical or

virtual hosts.

This section lists the (minimum) system requirements for installing and using Ansible. For more details refer

to the official documentation present here:

• For the ‘Control’ machine, any distribution of Linux with Python 2.7 or newer, or 3.5 or newer.

• For the ‘managed nodes’, you need Python 2.6 or newer, or 3.5 or newer.

• PIP, the package management system for Python. If not already present, this can be installed, as

below, depending on the Python version you use.

For Python2:

sudo apt install python-pip

For Python3:

sudo apt install python3-pip

• The infoblox-client WAPI package for python.

For Python2:

sudo pip install infoblox-client

For Python3:

sudo pip3 install infoblox-client

• If using MacOS, run the following command to avoid the error “Too many files open”.
sudo launchctl limit maxfiles unlimited

• Internet access and working DNS on the system where Ansible is being installed (the ‘Control’

machine).

Initial Setup

Ansible

Ansible is supported on multiple Linux distributions so the installation steps will vary depending on the flavor

that you are installing it on.

When getting started, it is recommended to use the OS packages for EPEL and APT; although, Ansible is

available through multiple sources, including Pypi and GitHub. For installation instructions for your OS

(operating system), refer to https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html.

Picking an Ansible Version

Which Ansible version to install is based on your particular needs. You can choose any of the following

ways to install Ansible:

• Install the latest release with your OS package manager (for Red Hat Enterprise Linux (TM),

CentOS, Fedora, Debian, or Ubuntu).

• Install with pip (the Python package manager).

• Install ansible-base from source to access the development (devel) version to develop or test

the latest features.

Please note that to get the Infoblox Collections to work as described in the guide, the minimum required

version is Ansible 2.9.

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Automate Infoblox Infrastructure Using Ansible (February 2021) 7 of 20

In this guide, we demonstrate the installation of the latest release of Ansible on Ubuntu using APT.

Installation

To install Ansible on Ubuntu, run the following commands:

sudo apt update

sudo apt install software-properties-common

sudo apt-add-repository --yes --update ppa:ansible/ansible

sudo apt install ansible

Note: This process generally only takes a few minutes to complete.

Verify Installation

To verify that Ansible has been successfully installed, run the following command:

ansible --version

Inventory

Ansible uses an ‘inventory’ to identify all servers that it manages. This can be done using a static ‘hosts’ file

(found in /etc/ansible/ by default) or a dynamically generated inventory list. To update the static inventory

and add your Infoblox appliance, use the following command examples:

1. sudo vi /etc/ansible/hosts

2. <shift-G> (move to the bottom of the file)

3. i (to enter interactive mode)

4. Type the name or IP address for your Infoblox appliance.

5. <esc>

6. :wq

Infoblox

Supported Versions

When preparing your playbooks, it is important to set the WAPI version to the version used by your version

of NIOS by specifying the wapi_version: x.x parameter.

You can verify the WAPI version used by your Infoblox appliance by appending “/wapidoc/#backward-

compatibility” to the end of the URL used to connect to your Infoblox Grid Manager GUI.

Example:
https://grid-master.demo.com/wapidoc/#backward-compatibility

Automate Infoblox Infrastructure Using Ansible (February 2021) 8 of 20

The default for the WAPI version is set to 2.1, which corresponds to NIOS version 7.1. Some operations

may require newer WAPI versions. For example, the minimum version required for the NIOS member

module to work is 2.2

Cloud Admin user (Optional)

The plugin will authenticate with NIOS using an account specified in its config file/playbook or environment

parameters. For this to work, this account must first be created in NIOS.

This can be a regular admin account, or a cloud-api enabled account, with the appropriate permissions.

To create a cloud-api enabled admin account:

1. Login to your Infoblox Grid Manager GUI if not already logged in.

2. Navigate to Administration → Administrators → Admins.

3. Click on the + (Add) button.

4. Specify the username in the Login field, along with the desired password in the two corresponding

text boxes.

5. Click Select and choose the cloud-api-only group.

6. Click Save & Close.

Note: For the cloud-api-only group to be available, you need to have the Cloud Network Automation

license enabled on your NIOS appliance.

Automate Infoblox Infrastructure Using Ansible (February 2021) 9 of 20

Permissions must also be defined which will allow the plugin to make changes. To set the permissions:

1. Navigate to Administration → Administrators → Permissions.

2. Under the Groups column, select cloud-api-only.

3. Click on the + (Add) button. If the menu expands, select Global Permissions (clicking on the icon

itself will default to this menu option).

4. Set the permissions as required. For lab purposes and getting started, allow Read/Write access for

the following:

a. DNS Permissions -> All DNS Views

b. DHCP Permissions -> All Network Views

c. Grid Permissions -> All Members

Note: Permissions are inherited. Unless overridden at a lower level, they apply to all objects underneath.

Automate Infoblox Infrastructure Using Ansible (February 2021) 10 of 20

Ansible-Infoblox Integration

Getting Started

As mentioned in the requirements section, please make sure you the Python Infoblox Client installed.
The infoblox-client WAPI package for python can be installed as below, depending on the Python version used
by Ansible.

For Python2:

sudo pip install infoblox-client

For Python3:

sudo pip3 install infoblox-client

To identify which version of Python Ansible is using, you can check the results of the ansible –-version

command.

In the above example, you would need to use the command for python3 mentioned above.
To verify if you have the client installed, you can run the following command.

For Python2:

sudo pip show infoblox-client

For Python3:

sudo pip3 show infoblox-client

Installing the Infoblox Collections

The nios_modules collection can be installed either from Ansible Galaxy or directly from git. It is

recommended to install collections from Ansible Galaxy as those are more stable than the ones in the git
branch.
In this deployment guide, we will install the collections from Ansible Galaxy.

Installation from Ansible Galaxy

To directly install the nios_modules collection from Ansible Galaxy, run the following command:

ansible-galaxy collection install infoblox.nios_modules

Automate Infoblox Infrastructure Using Ansible (February 2021) 11 of 20

The collection folder would be installed at

~/.ansible/collections/ansible_collections/infoblox/nios_modules

Installation from Git

To git clone and install from this repo, follow these steps:

1. Clone the repo:
git clone https://github.com/infobloxopen/infoblox-ansible.git

2. Build the collection:
To build a collection, run the following command from inside the root directory of the collection:
cd infoblox-ansible/ansible_collections/infoblox/nios_modules

ansible-galaxy collection build

This creates a tarball of the built collection in the current directory.
3. Install the collection:

ansible-galaxy collection install <collection-name>.tar.gz -p

./collections

Writing the Playbooks

Developing playbooks that use the Infoblox NIOS modules can enable complex operations when automating
IPAM functions for device management. Infoblox ships a few sample playbooks that can be used as a
reference.
You can find these sample playbooks inside the root directory of the collection under the playbooks/

directory.
Depending on your method of installation, navigate to the collection root directory. If you installed from Ansible

Galaxy, navigate to ~/.ansible/collections/ansible_collections/infoblox/nios_modules and

you would find it as below.

cd ~/.ansible/collections/ansible_collections/infoblox/nios_modules/playbooks

ls

You can copy it to your working directory, modify them and execute them.

A select number of example playbooks are included as part of this deployment guide for your reference

below.

Automate Infoblox Infrastructure Using Ansible (February 2021) 12 of 20

Create a Network View

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: create network view

infoblox.nios_modules.nios_network_view:

 name: demo

 extattrs:

 Site: Demo Site

 comment: Created with Ansible

 state: present

 provider: "{{ nios_provider }}"

Create a Network

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: create network

infoblox.nios_modules.nios_network:

 network: 10.0.0.0/24

 network_view: demo

 options:

- name: domain-name

value: infoblox-ansible.com

 extattrs:

 Site: Test Site

 comment: Created with Ansible

 state: present

 provider: "{{ nios_provider }}"

Automate Infoblox Infrastructure Using Ansible (February 2021) 13 of 20

Create a Host Record

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: create host record

infoblox.nios_modules.nios_host_record:

 name: host.demo.com

 view: demoDNSView

 ipv4addrs:

- ipv4addr: "{{ lookup('nios_next_ip', '10.0.0.0/24',

provider=nios_provider)[0] }}"

 ipv6addrs:

- ipv6addr: fd00::2

 ttl: 3600

 extattrs:

 Site: Demo Site

 comment: Created with Ansible

 state: present

 provider: "{{ nios_provider }}"

Create an A Record

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: Create NIOS A record

infoblox.nios_modules.nios_a_record:

 name: test-server.demo.com

 view: demoDNSView

 ipv4: 192.168.11.251

 comment: Created with Ansible

 state: present

 provider: "{{ nios_provider }}"

Automate Infoblox Infrastructure Using Ansible (February 2021) 14 of 20

Add entry for a Grid Member

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: create member

infoblox.nios_modules.nios_member:

 host_name: member01.ansible-demo.com

vip_setting:

- address: 192.168.1.71

subnet_mask: 255.255.255.0

gateway: 192.168.1.1

config_addr_type: IPV4

platform: VNIOS

comment: Created with Ansible

state: present

provider: "{{ nios_provider }}"

Delete A Record

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: delete A record

infoblox.nios_modules.nios_a_record:

 name: test-server.demo.com

 view: demoDNSView

 state: absent

 provider: "{{ nios_provider }}"

Automate Infoblox Infrastructure Using Ansible (February 2021) 15 of 20

Delete Network

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: delete network

infoblox.nios_modules.nios_network:

 network: 10.0.0.0/24

 network_view: demo

 state: absent

 provider: "{{ nios_provider }}"

Delete Member

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: delete member

infoblox.nios_modules.nios_member:

 host_name: member01.ansible-demo.com

state: absent

provider: "{{ nios_provider }}"

Automate Infoblox Infrastructure Using Ansible (February 2021) 16 of 20

Sample lookup plugin

- hosts: localhost

vars:

 nios_provider:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: '2.12'

 connection: local

 tasks:

- name: get member list

set_fact:

members: "{{ lookup('nios', 'member', provider=nios_provider) }}"

- name: display all members

debug:

msg: "{{ members }}"

Preparing your Playbooks

Once your environment has been setup, the first step before running your playbooks is to make sure that all

variables are updated for your environment. In the examples provided in this guide, the variables which may

require modification have been highlighted in red.

Running your Playbooks

Once your playbooks have been updated with any changes required to make them work in your

environment, you are ready to begin working with them. To run the playbook, use the ansible-playbook

command.

ansible-playbook <name_of_playbook>.yaml

To increase verbosity of the output, you can add -v to the ansible-playbook command.

URI Module

In case, you need to automate Infoblox objects that are not a part of the 16 modules supported in the

collections, you may use the uri module that is part of ansible-base and included in all Ansible

installations. It allows users to interact with HTTP and HTTPS web services. You can find more information on

how to use it here.

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/uri_module.html

Automate Infoblox Infrastructure Using Ansible (February 2021) 17 of 20

Below is a sample playbook that uses the uri module can be used against any of the REST APIs supported

by the Infoblox Grid. It uses the grid:dns endpoint to start the DNS service on the grid.

Example URI module usage to start DNS services on the Grid

- hosts: localhost

vars:

 host: grid-master.demo.com

 username: cloudadmin

 password: pwd

 wapi_version: 'v2.12'

 connection: local

 tasks:

- name: Get object reference of the DNS service

uri:

 url: "https://{{ host }}/wapi/{{ wapi_version

}}/member:dns?host_name=infoblox.localdomain"

 user: "{{ username }}"

 password: "{{ password }}"

 validate_certs: no

 return_content: yes

 method: GET

 force_basic_auth: yes

 status_code: 200

 register: content

- name: Print object reference

debug:

 var: content.json[0]["_ref"]

- name: Use object reference to start the DNS service

uri:

 url: "https://{{ host }}/wapi/{{ wapi_version }}/{{

content.json[0][\"_ref\"] }}"

 user: "{{ username }}"

 password: "{{ password }}"

 validate_certs: no

 return_content: yes

 method: PUT

 force_basic_auth: yes

 status_code: 201, 302, 200

 headers:

 Content-Type: "application/json"

 body:

 enable_dns: true

body_format: json

Conclusion
With the Infoblox NIOS Collection for Ansible, organizations can confidently handle the most challenging DDI

requirements in every type of network, data center, and hybrid cloud environment.

The Ansible modules allow you to configure Infoblox, and plugins allow you to grab information from

Infoblox to use in subsequent tasks. With these modules, you can now automate your Infoblox

infrastructure.

https://github.com/infobloxopen/infoblox-ansible

Automate Infoblox Infrastructure Using Ansible (February 2021) 18 of 20

Additional Information
https://www.ansible.com/

http://docs.ansible.com/ansible/latest/

http://docs.ansible.com/ansible/latest/YAMLSyntax.html

https://community.infoblox.com/

Community Blog: Infoblox vNIOS Autoscaling on Openstack using Ansible

Community Blog: What is new with Ansible 2.8

Community Blog: Infoblox is Pleased to Announce the Brand New Infoblox NIOS Collection for Ansible

Reference Guide: Infoblox REST API

Appendix

Troubleshooting

NIOS Module Command Help

If the infoblox-client package for Python has not been installed, you will see an error confirming that it is

required. Example:

python infoblox.py

infoblox-client is required but does not appear to be installed. It can be

installed using the command `pip install infoblox-client`

Sometimes, even if you have the infoblox-client installed, you may encounter this error. In that case, ensure

that the infoblox-client and Ansible are using the same python version.

https://www.ansible.com/
http://docs.ansible.com/ansible/latest/
http://docs.ansible.com/ansible/latest/YAMLSyntax.html
https://community.infoblox.com/
https://community.infoblox.com/t5/Community-Blog/Infoblox-vNIOS-Autoscaling-on-Openstack-using-Ansible/ba-p/17538
https://community.infoblox.com/t5/Community-Blog/What-is-New-with-Ansible-2-8/ba-p/17552
https://blogs.infoblox.com/community/infoblox-is-pleased-to-announce-the-brand-new-infoblox-nios-collection-for-ansible/
https://www.infoblox.com/wp-content/uploads/infoblox-deployment-infoblox-rest-api.pdf

3

Infoblox is the leader in modern, cloud-first networking and security services. Through extensive integrations, its solutions empower

organizations to realize the full advantages of cloud networking today, while maximizing their existing infrastructure investments.

Infoblox has over 12,000 customers, including 70 percent of the Fortune 500.

Corporate Headquarters | 2390 Mission College Boulevard, Ste. 501 | Santa Clara, CA | 95054

+1.408.986.4000 | info@infoblox.com | www.infoblox.com

© 2021 Infoblox, Inc. All rights reserved. Infoblox logo, and other marks appearing herein are property of Infoblox, Inc. All other marks

are the property of their respective owner(s).

mailto:info@infoblox.com
https://www.youtube.com/user/InfobloxInc
https://www.linkedin.com/company/infoblox/
https://twitter.com/infoblox
https://www.facebook.com/Infobloxinc/

