CASE STUDY

UC Berkeley Modernizes Its Network Infrastructure Using Infoblox DDI and Grid Solutions

The Solution
- Infoblox Next Level Networking platform for Domain Name System (DNS), DHCP, and IP address management (DDI)
- Infoblox Grid™

The Results
- Faster delivery of services
- Ease of operations
- Lower TCO
- Enhanced integration with legacy and back-end systems
- Improved automation

The Customer
Founded in 1868, the University of California, Berkeley, is the flagship campus of the University of California system. It is a public research university with more than 130 academic departments, 80 interdisciplinary research units, and nearly 40,000 students, full visibility and operational efficiency are crucial to managing the university’s network.

The Challenge
Modernize and customize its aging DDI network infrastructure in order to improve automation, efficiency and flexibility, reduce maintenance burden and lower total cost of ownership.

UC Berkeley Replaces Its Own Legacy BIND System with Infoblox
While UC Berkeley’s IP networking system met the university’s basic needs, its network management team found it was utilizing resources inefficiently. Multiple employees were required to maintain the legacy BIND system, which kept operational costs high and ran contrary to the university’s reputation as a technological innovator.

Compounding the challenge of an aging network infrastructure was a network that would grow increasingly complex as the number of connected devices continues to climb. With student enrollment expected to increase by 10,000 students by the 2018 – 2019 school year, the impact of service interruptions is increasing and has the potential to impact multi-national and interdisciplinary research projects. Additionally, the BIND legacy IPv4-capable network was unable to handle automated IPv6 addressing, requiring manual servicing of requests to meet the needs of a growing
“Infoblox simplifies something that is really quite complex. At the same time, it gives us the flexibility to do the things we need to do. I would definitely recommend Infoblox to peers.”

Isaac Orr, Manager of Network Operations and Services, UC Berkeley

Isaac Orr manages the Network Operations and Services Group responsible for the campus data network at the University of California, Berkeley. “It’s a large network,” he says. “We have around 60,000 wired ports, 4,500 access points, and 115,000 devices connected to the network. The group I manage ranges all the way from field installation technicians to more senior people involved in larger projects, such as deploying networking to new buildings on campus or developing new network services. That encompasses pretty much everything from DNS hosts to iPads and phones on the Wi-Fi network.”

Coincidentally, before Infoblox, the defacto standard used to manage core network services at UC Berkeley was BIND (Berkeley Internet Name Domain), which was developed and built by top experts at the school. “IP networking has been big here since IP networking existed,” Orr shares. “Everything we had was actually custom built in house quite some time ago. The system was based on a PostScript database with PERL scripts.”

Functionality was not a problem; the legacy BIND system worked as it was supposed to, but IT no longer had the resources to maintain and continue its development. Since the last major work had been done on it in 2003, it had begun to lag behind in some of the things that Orr’s internal customers needed. “The BIND-based system was fairly inflexible in terms of making changes,” Orr says, “and having somebody to care for and feed the servers that did all those scripts was consuming two employees’ time—one of them a senior networking person.”

Looking for something more efficient that would lower total cost of ownership (TCO), Orr’s team selected Next Level Networking from Infoblox for the school’s large and diverse network. “Infoblox has a very good reputation in the industry,” says Orr, “and we knew of other University of California campuses that had deployed Infoblox solutions. We also had people within our own group who had worked with it and were impressed.

“So we already had a pretty high opinion of the product, and when we started comparing it with other solutions in the marketplace, we concluded that it had the fullest feature set, and would allow us to do a lot of stuff.” The university purchased both physical and virtual Infoblox appliances running DNS, DHCP, and IP address management (DDI) on the centrally managed Infoblox Grid™ architecture.

A Simplified Solution for Better Integration and Automation

Infoblox has allowed UC Berkeley to better integrate and automate its systems and tools. For instance, the university can now use APIs to integrate Infoblox DDI with solutions from other vendors, custom code built by the university, and with legacy BIND. These improved integration and automation capabilities also make it easier for the university to automate tasks using role-based access to allow the virtualization team to control its own zones, simplify DNSSEC assignment, transition to IPv6, and flexibly combine virtual and physical appliances to leverage infrastructure already in place.

In addition, the integration and automation in Infoblox enables his team to manage DHCP and IP address management more effectively. His team can now better access and control a key portal that campus users go through to register the MAC addresses of their devices to their university-wide ID. If someone’s MAC address isn’t registered, that person doesn’t get DHCP or an IP address. If a registered device is compromised, IT can automatically block it from getting DHCP or an IP address.
Taking the Complexity out of DNSSEC

UC Berkeley was an early adopter of DNSSEC, and for some time it had been signing all of its major zones. However, this process required multiple scripts that had to be activated to re-sign all those zone files. The activations made iterative changes to DNS very difficult and less secure. It process worked, but it also created the possibility of errors that Orr says could break the whole system. “The worst-case scenario,” he says, “would be that the Berkeley name space would be unresolvable, and from a campus perspective, that would be pretty huge.” With Infoblox, UC Berkeley was able to step up to next level network automation with features like one-click, automated DNSSEC deployment. (See “A Best Practices Architecture for DNSSEC” by Cricket Liu.)

Becoming a Leader in Providing IPv6

UC Berkeley IT was well aware of the need to transition to the new IP address protocol before available IPv4 addresses were exhausted. However, its legacy system could not understand or accommodate IPv6 addresses. There was no way within the custom-built IPAM solution to allocate IPv6 address space, so they were doing it manually, and they had separate DNS servers that did the zones for IPv6.

“If somebody asked us for IPv6, we would provide it,” says Orr, “but it wasn’t a thing that we could just turn on everywhere and make available. With Infoblox we can. You have to remember that from our perspective, we look much more like a service provider than an enterprise IT department. So we have to allocate IP address space on campus just as a service provider does. Infoblox is perfect for that, and UC Berkeley is now a leader in terms of IPv6 instead of lagging behind.”

Seamlessly Managing Both Virtual and Physical Appliances

UC Berkeley’s Infoblox implementation includes a mixture of physical and virtual appliances. “We already had virtualized infrastructure for the DNS BIND servers, so it made sense to deploy virtual appliances wherever we could,” says Orr. “But for our Grid Masters, based on scale, that wasn’t the right choice, and we have some remote Infoblox devices for redundancy that needed to be physical as well.” Managing this mixture of virtual and physical presents no problems, since the Infoblox Grid seamlessly manages the two in concert.
Saving Time and Money with Infoblox

When asked about the benefits Berkeley has gained, the first thing Orr mentions is reduction in TCO. “We’ve saved $75,000 per year on the senior labor we were using to help manage and maintain the DNS infrastructure.”

Time savings come next. “Five years ago when I started,” he says, “if you requested a new host on a subnet that was full, the process took at least two weeks to complete. Now, we’re down to three to five days. That’s a pretty big change in an organization of this size, and the Infoblox infrastructure was a big part of that.”

Then there’s the simplicity of operation. “Infoblox simplifies something that is really quite complex. At the same time, it gives us the flexibility to do the things we need to do. I would definitely recommend Infoblox to peers.”