

Table of Contents

Introduction 2

Infoblox NIOS and Infoblox Terraform Provider 2

Prerequisites 2

Key Terms 3

Infoblox Grid Configuration 3

DNS Zone 3

Terraform Installation 7

Windows 7

macOS 7

Linux 7

Terraform Commands 8

Installing and Authenticating With the Infoblox Terraform Provider 9

Common Fields 10

Comments 10

Extensible Attributes 10

Extensible Attributes for Cloud Objects 10

TTL 11

Examples 11

Create DNS Records 11

Apply Terraform Configuration File 12

Provision Network and VM in Azure 15

Apply Terraform Configuration Files 18

Additional Resources 22

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
1

Introduction
Terraform is an Open Source Infrastructure as Code (IaC) tool that is developed by HashiCorp. It enables
predictable and consistent provisioning of infrastructure across many public and private cloud providers.

Infoblox NIOS and Infoblox Terraform Provider
Infoblox NIOS provides core network services that include integrated, secure, and easy-to-manage DDI
services - DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol) and IPAM (IP address
management).

The Infoblox Terraform provider interfaces with Infoblox NIOS through REST API to provide IP Address
Management and DNS Services. Instead of manually provisioning IP addresses and DNS records for network
devices and interfaces in your infrastructure, you can use the plugin to automate these steps with Infoblox
NIOS.

The Infoblox Terraform provider includes the following Resource types:

● Network View

● IPv4 and IPv6 Network Containers

● IPv4 and IPv6 Networks

● IPv4 and IPv6 Address Allocation - Allocates IP and creates Host record

● DNS Records: A, AAAA, CNAME, PTR

● IPv4 and IPv6 Association - Updates Grid with VM data

The resources listed support Create, Update, and Delete operations.

The following Data Sources are included :

● IPv4 Networks

● DNS Records: A, CNAME

This deployment guide covers the use of the Infoblox Terraform provider, v2.0.1. Examples in this guide show
integration with the Azure public cloud. Additional examples for all resource types and data sources as well as
example integrations with AWS and VMware vSphere cloud platforms can be found in the Infobloxopen GitHub
repository, https://github.com/infobloxopen/terraform-provider-infoblox/tree/master/examples/v0.14. Full
documentation on all of the resources and data sources can be found at
https://docs.infoblox.com/display/ipamdriverterraform or in the Terraform registry,
https://registry.terraform.io/providers/infobloxopen/infoblox/latest/docs.

Prerequisites
The following are prerequisites for using the Infoblox Terraform provider:

● Terraform version 0.14 or newer.

● Infoblox NIOS or vNIOS appliance, version 8.5 or newer with required licenses: Grid, NIOS, DNS.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
2

https://github.com/infobloxopen/terraform-provider-infoblox/tree/master/examples/v0.14
https://docs.infoblox.com/display/ipamdriverterraform
https://registry.terraform.io/providers/infobloxopen/infoblox/latest/docs

Key Terms
● Provider: Plugins for Terraform that interact with other tools such as cloud providers, SaaS

applications, and other APIS.

● Terraform Configuration: A document written in the Terraform language, which tells Terraform how to
manage a collection of infrastructure.

● Resource Block: Defines one or more infrastructure objects in a Terraform configuration. Each
provider contains a collection of resources for managing its associated infrastructure.

● Data Source: Used in a Terraform configuration to pull in data from another source to be used by
Terraform. Providers can include data sources to access information from their associated
infrastructure.

● Terraform Registry: A repository of providers for Terraform. The registry is directly integrated with
Terraform, allowing you to specify providers in your configuration files.

Infoblox Grid Configuration
To use the Infoblox Terraform provider, you will need an Infoblox Grid running NIOS 8.5 or newer. This guide
assumes you have a Grid with at least one member already deployed. For instructions on deploying Infoblox
NIOS or vNIOS, refer to the deployment guide for the appropriate platform. Deployment guides for many
available platforms can be found at https://www.infoblox.com/resources/. NIOS and virtual appliance
documentation can be found at https://docs.infoblox.com.

DNS Zone
To use all of the Infoblox Terraform provider DNS resource types, you will need at least one Authoritative
Forward-Mapping Zone in your Infoblox Grid.

1. In the Grid Manager, navigate to the Data Management → DNS → Zones tab.

2. Open the (Add) dropdown.

3. Select Authoritative Zone.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
3

https://www.infoblox.com/resources/
https://docs.infoblox.com

4. On Step 1 of the wizard, select Add an authoritative forward-mapping zone.

5. Click Next.

6. On Step 2, enter the name of your zone.

7. Click Next.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
4

8. On Step 3, select Use this set of name servers.

9. Open the (Add) dropdown.

10.Select Grid Primary.

11.Click Select in the Add Grid Primary panel.

12.For a Grid with only one member, it will be automatically selected. If you have multiple Grid members,
select the one you want to use as a name server.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
5

13.Click Add.

14.Click Save & Close.

15.Click Restart in the warning bar when prompted.

16.Click Restart in the Restart Grid Services window.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
6

Terraform Installation
Terraform is available for many operating systems. Instructions and download information for the supported
platforms can be found at https://learn.hashicorp.com/tutorials/terraform/install-cli. The following are basic
installation methods for Windows, macOS, and Debian/Ubuntu Linux operating systems.

Windows
To install Terraform on Windows, use the Chocolatey package manager command:

choco install terraform

For information on installing and using Chocolatey, refer to https://chocolatey.org/.

macOS
To install Terraform on macOS, use the Homebrew package manager command:

brew install hashicorp/tap/terraform

For information on installing and using Homebrew, refer to https://brew.sh/.

Linux
Terraform can be installed on many Linux distributions using their native package managers. To install
Terraform on Ubuntu or Debian Linux, use the following steps:

1. Open a terminal window.

2. Add the HashiCorp GPG key with the command:

curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -

3. Add the HashiCorp Linux repository with the following command:

sudo apt-add-repository “deb [arch=amd64] https://apt.releases.hashicorp.com $(lsb_release
-cs) main”

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
7

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://chocolatey.org/
https://brew.sh/

4. Run the following command to update package information and install Terraform:

sudo apt-get update && sudo apt-get install terraform

Terraform Commands
The following are basic commands you will use while working with the Infoblox Terraform Provider. For
additional information and reference for all Terraform commands, refer to the documentation at
https://www.terraform.io/docs/commands/index.html. All commands will begin with terraform, followed by a
subcommand. Screenshots of some commands are shown here; others will be shown in the Examples section.

● terraform -help: This command displays the common commands available for Terraform.

● terraform -version: This command displays the version of Terraform installed on your computer.

● terraform init: This command is used to initialize a working directory containing Terraform
configuration files and install Terraform providers such as the Infoblox plugin. This command must be
run in a directory prior to apply or plan. A screenshot is provided in the Examples section.

● terraform validate: This command is used to verify that configuration files in the working directory are
valid. Configuration files are validated for syntax and internal consistency. This is applied only to the
configuration and does not access any remote services such as provider APIs.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
8

https://www.terraform.io/docs/commands/index.html

● terraform plan -out=<path/file>: The plan command creates an execution plan by determining the
actions needed to achieve a desired state based on the configuration files in your directory. This
command does not make any changes and is a good way to verify that your configuration files will give
the desired result prior to executing. The -out parameter is optional and records the plan for later use
when applying the configuration. A screenshot is provided in the Examples section.

● terraform apply <plan_file>: The apply command executes changes required to meet the desired
state based on configuration files in your directory. Optionally, add the name of the file output by the
plan command to execute the predetermined actions from the plan command. A screenshot is
provided in the Examples section.

● terraform destroy: This command is used to de-provision Terraform managed infrastructure defined
by the configuration files in your directory. The destroy command will ask for confirmation unless the
-auto-approve argument is used. A screenshot is provided in the Examples section.

Installing and Authenticating With the Infoblox Terraform Provider
In Terraform version 0.13 and later, a required providers block, which must be nested inside a terraform block,
is required to install the Infoblox provider (and most other providers). The following is an example of a required
providers block to install the Infoblox provider v2.0.1:

terraform {
required_providers {

infoblox = {
source = “infobloxopen/infoblox”
version = “~2.0.1”

}
}

}

The terraform block containing the required providers block can be followed by a provider block to pass
additional configuration for the provider such as credentials. The following is an example of a provider block for
Infoblox:

provider “infoblox” {
username = “admin”
password = “password”
server = “10.0.0.1”

}

The server, username, and password arguments specify the Infoblox credentials which will be used when
provisioning and deprovisioning resources in your Infoblox Grid.

If you do not want to include credentials in your Terraform configuration file for Infoblox, they can be stored as
environmental variables on your system instead. For example, you can make these credentials available on
Linux and macOS systems using the following commands in your terminal:

export INFOBLOX_USERNAME=”admin”
export INFOBLOX_PASSWORD=”password”
export INFOBLOX_SERVER=”10.0.0.1”

When you export the credentials as shown above, you can omit them from your provider block.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
9

Common Fields
All of the Infoblox Terraform resources support fields for comments and extensible attributes. Additionally, DNS
record resources support the TTL field. These fields are all optional.

Comments
The comment field is used to add a comment or description to the object created. Comments can be viewed in
the Grid Manager GUI or returned as part of an API call. The comment field takes a string value. The following
is an example of a Network View resource with a comment:

resource “infoblox_network_view” “new_view” {
name = “New-View”
comment = “This object is created by Terraform”

}

Extensible Attributes
Extensible attributes (EA) are identifiers applied to objects in the NIOS Grid, similar to tags used in Azure or
AWS, that allow you to further define and track objects. The optional ext_attrs argument for all resources in the
Infoblox provider allows you to add extensible attributes to the objects being created. You can add any
extensible attribute to your resource that is defined in the Grid and allowed for that object type. The ext_attr
argument contains a JSON encoded block of key/pair values. This example shows a Network resource with
ext_attrs to add values for Location and Site EAs:

resource “infoblox_ipv4_network” “new_network” {
cidr = “10.101.0.0/24”
ext_attrs = jsonencode({
“Location” = “California”
“Site” = “HQ”
})

}
For additional information on managing extensible attributes, refer to NIOS documentation,
https://docs.infoblox.com/display/ILP/NIOS.

Extensible Attributes for Cloud Objects
The Infoblox provider for Terraform is commonly used with Infoblox Cloud Network Automation features to
automate DNS and IPAM for private and public cloud platforms. To use Terraform with the Cloud API for CNA,
or with Cloud Platform (CP) appliances, specific extensible attributes must be included in the ext_attrs
argument. You must include values for: CMP Type, Tenant ID, and Cloud API Owned. The following is an
example of a ext_attrs argument for a cloud object:

ext_attrs = jsonencode({
“CMP Type” = “Terraform”
“Tenant ID” = “tenant-1”
“Cloud API Owned” = “True”

})

You can include other extensible attributes for cloud objects in addition to the three which are required.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
10

https://docs.infoblox.com/display/ILP/NIOS

TTL
The time to live (TTL) field is supported for all DNS record resources and data sources. TTL specifies the time
that a name server is allowed to cache a record before updating the data. The TTL field takes an integer value
and is expressed in seconds. A value of 0 indicates the record should not be cached. If no TTL field is
specified, the record created will inherit this value from the parent zone. The following is an example of an A
record resource which sets a TTL of 3600 seconds (1 hour):

resource “infoblox_a_record” “new_record” {
fqdn = “newrecord.ibxdemo.com”
ip_addr = “192.168.233.4”
ttl = 3600

}

Examples
This section provides examples of Terraform configuration files for use with the Infoblox Terraform provider.
Required file syntax and formatting may change at any time and without notice. These examples are provided
as-is and without warranty. For additional information on Terraform configuration language including changes in
new versions, refer to the Terraform documentation: https://www.terraform.io/docs/configuration/index.html. For
additional information on usage of Infoblox plugin resources including those not shown in these examples, refer
to the Infoblox Terraform provider on GitHub: https://github.com/infobloxopen/terraform-provider-infoblox.

Create DNS Records
This example demonstrates a configuration file used to create DNS records for a DNS server. The configuration
will create an A record and CNAME record. In order for this configuration to be successfully applied, you will
need to have an existing authoritative DNS zone. Copy the below example into a text file and save as
dns_records.tf. Replace the server, username, and password values with credentials from your Grid Master.
Values used for other arguments such as CIDRs and names can be changed as desired for your environment.
Lines that begin with # are comments explaining the resources and are not read when applying the
configuration. The terraform and nested required provider block is required for Terraform version 0.13 and later.

Terraform block containing the required providers block to install the Infoblox provider
terraform {

required_providers {
infoblox = {

source = "infobloxopen/infoblox"
version = "2.0.1"

}
}

}

Provider block for Infoblox credentials
provider "infoblox" {

server = "1.2.3.4"
username = "admin"
password = "infoblox"

}

Create A record
resource "infoblox_a_record" "dynamic_record" {

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
11

https://www.terraform.io/docs/configuration/index.html
https://github.com/infobloxopen/terraform-provider-infoblox

network_view = "default"
dns_view = "default"
fqdn = "server1.ibxdemo.com"
Dynamically allocate IP from an existing network. To statically assign an IP, use the ip_addr

argument instead of cidr.
cidr = "192.168.208.0/24"
ttl = 3600

}

resource "infoblox_cname_record" "cname_1" {
dns_view = "default"
canonical = infoblox_a_record.dynamic_record.fqdn
alias = "server1-alias.ibxdemo.com"
ttl = 3600

}

Apply Terraform Configuration File
To deploy resources using the example configuration file above, save the file in a directory on your computer.
Open a terminal and navigate to that directory. Run terraform init to initialize and install the Infoblox provider.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
12

Run the command terraform plan -out=plan1 to verify your environment and create an execution plan.

If there are any errors, make corrections in your configuration files. As long as there are no errors shown, you
are ready to apply the configuration. Run the terraform apply plan1 command to execute your plan.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
13

To view the new DNS records in your Infoblox Grid, login to Grid Manager and navigate to the Data
Management → DNS tab. Click on your DNS zone to view the records.

When you are ready to deprovision the example resources, back in your terminal run the terraform destroy
command.

The records will be removed from your Infoblox Grid.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
14

Provision Network and VM in Azure
This example demonstrates configuration files used to provision a new virtual network and virtual machine in
Azure. The example uses the Infoblox provider to add the network container and network into the Infoblox Grid,
find the next available IP address to use for the VM, create a DNS Host record for the VM, and update the Grid
with metadata for the VM. We will use two files, infoblox.tf and vm.tf.

The first file, infoblox.tf will contain the resource blocks to create and identify objects in the Infoblox Grid. Copy
the below example into a text file and save as infoblox.tf. Replace the server, username, and password values
with credentials for your Grid Master. Values used for other arguments such as CIDRs and names can be
changed as desired for your environment. Lines that begin with # are comments explaining the resources and
are not read when applying the configuration. The terraform and nested required provider block is required for
Terraform version 0.13 and later.

Terraform block containing the required providers block to install the Infoblox provider
terraform {
required_providers {
infoblox = {
source = "infobloxopen/infoblox"
version = "2.0.1"

}
azurerm = {
source = "hashicorp/azurerm"
version = "2.68.0"
}

}
}

Provider block for Infoblox credentials
provider "infoblox" {

username = "admin"
password = "infoblox"
server = "1.2.3.4"

}

Create Network Container in Grid
resource "infoblox_ipv4_network_container" "az_vnet" {
network_view = "default"
cidr = "192.168.233.0/24"
comment = "New Azure VNet"
ext_attrs = jsonencode({
"Tenant ID" = "Azure-tenant"
"CMP Type" = "Azure"
"Cloud API Owned" = "True"

})
}
Create network object in Grid
resource "infoblox_ipv4_network" "az_network" {
network_view = "default"
allocate_prefix_len = 25
parent_cidr = infoblox_ipv4_network_container.az_vnet.cidr

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
15

reserve_ip = 2
ext_attrs = jsonencode({
"Network Name" = "tfsub"
"Tenant ID" = "Azure-tenant"
"CMP Type" = "Azure"
"Cloud API Owned" = "True"

})
}

Allocate IP address from new network for a new VM
resource "infoblox_ipv4_allocation" "az_allocation" {
network_view = "default"
dns_view = "default"
cidr = infoblox_ipv4_network.az_network.cidr
fqdn = "az-vm1.ibxdemo.com"
enable_dns = "true"
enable_dhcp = "false"
ext_attrs = jsonencode({
"VM Name" = "az-vm1"
"Tenant ID" = "Azure-tenant"
"CMP Type" = "Azure"
"Cloud API Owned" = "True"

})
}

Update Grid with VM data
resource "infoblox_ipv4_association" "az_associate" {
network_view = infoblox_ipv4_allocation.az_allocation.network_view
dns_view = infoblox_ipv4_allocation.az_allocation.dns_view
fqdn = infoblox_ipv4_allocation.az_allocation.fqdn
enable_dns = infoblox_ipv4_allocation.az_allocation.enable_dns
enable_dhcp = infoblox_ipv4_allocation.az_allocation.enable_dhcp
cidr = infoblox_ipv4_network.az_network.cidr
mac_addr = azurerm_network_interface.ni.mac_address
ip_addr = infoblox_ipv4_allocation.az_allocation.ip_addr
ext_attrs = jsonencode({
"Network Name" = azurerm_subnet.subnet.name
"VM Name" = azurerm_virtual_machine.vm.name
"VM ID" = azurerm_virtual_machine.vm.id
"Tenant ID" = "Azure-tenant"
"CMP Type" = "Azure"
"Cloud API Owned" = "True"

})
}

The second file, vm.tf will contain the resource blocks to create resources in Azure, using values provided by
the Infoblox resources. Copy the below example into a text file and save as vm.tf. Replace the subscription ID,
client ID, client secret, and tenant ID with credentials authorized to create resources in your Azure environment.
To use different methods of authenticating with Azure, refer to the Azure provider documentation:
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs. Values used for other arguments such as

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
16

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

regions and names can be changed as desired for your environment. Lines that begin with # are comments
explaining the resources and are not read when applying the configuration.

Provider block for Azure credentials
provider "azurerm" {
features {}
subscription_id = "azure-subscription-id"
tenant_id = "azure-tenant-id"
client_id = "azure-app-registration-client-id"
client_secret = "azure-app-registration-client-secret"

}

Create a resource group in Azure for the new resources
resource "azurerm_resource_group" "terraform" {
name = "tf-ibx-grp"
location = "centralus"

}

Create a VNet
resource "azurerm_virtual_network" "vnet" {
name = "tfvnet"
address_space = [infoblox_ipv4_network_container.az_vnet.cidr]
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name

}

#Create subnet - references infoblox_network for CIDR
resource "azurerm_subnet" "subnet" {
name = "tfsub"
resource_group_name = azurerm_resource_group.terraform.name
virtual_network_name = azurerm_virtual_network.vnet.name
address_prefixes = [infoblox_ipv4_network.az_network.cidr]

}

Create public IP - OPTIONAL
resource "azurerm_public_ip" "ip" {
name = "tfip"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name
allocation_method = "Dynamic"
domain_name_label = "ibxvmiplabel"

}

Create network interface - references infoblox_ipv4_allocation for IP address
resource "azurerm_network_interface" "ni" {
name = "tfni"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name

ip_configuration {
name = "ipconfiguration"

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
17

subnet_id = azurerm_subnet.subnet.id
private_ip_address_allocation = "static"
private_ip_address = infoblox_ipv4_allocation.az_allocation.ip_addr
public_ip_address_id = azurerm_public_ip.ip.id

}
}

Create virtual machine - attaches network interface created in previous block
resource "azurerm_virtual_machine" "vm" {
name = "az-vm1"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name
network_interface_ids = [azurerm_network_interface.ni.id]
vm_size = "Standard_DS1_v2"
storage_image_reference {
publisher = "Canonical"
offer = "UbuntuServer"
sku = "18.04-LTS"
version = "latest"

}
storage_os_disk {
name = "myosdisk"
caching = "ReadWrite"
create_option = "FromImage"

}
os_profile {
computer_name = "az-vm1"
admin_username = "madmin"
admin_password= "Infoblox_123"

}
os_profile_linux_config {
disable_password_authentication = false

}
}

Apply Terraform Configuration Files
To deploy resources using the example configuration files above, save them both in a single directory on your
computer. Open a terminal and navigate to that directory.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
18

Run terraform init to initialize and install the Infoblox and Azure providers.

Run the command terraform plan -out=plan1 to verify your environment and create an execution plan.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
19

If there are any errors, make corrections in your configuration files. As long as there are no errors shown, you
are ready to apply the configuration. Run the terraform apply plan1 command to execute your plan.

To view the new network container (VNet) in your Infoblox Grid, login to Grid Manager and navigate to the Data
Management → IPAM tab.

Click on the network container to view the network (subnet) that was created inside.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
20

To view details of your network including the IP address allocated to your new VM, click on the network.

To view the DNS host record created for your VM, navigate to the Data Management → DNS → Zones and
click on your DNS zone.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
21

To view the resources created in your Azure subscription, login to the Azure portal and navigate to your new
resource group.

When you are ready to deprovision the example resources, back in your terminal run the terraform destroy
command.

The IPAM and DNS objects will be removed from your Infoblox Grid and the Azure resources will be deleted.

Additional Resources
● Infoblox Terraform Provider Documentation: https://docs.infoblox.com/display/ipamdriverterraform

● Infoblox Plugin for Terraform GitHub: https://github.com/infobloxopen/terraform-provider-infoblox

● Infoblox Plugin for Terraform in the Terraform Registry:
https://registry.terraform.io/providers/infobloxopen/infoblox/latest

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)
22

https://docs.infoblox.com/display/ipamdriverterraform
https://github.com/infobloxopen/terraform-provider-infoblox
https://registry.terraform.io/providers/infobloxopen/infoblox/latest

23

