Infoblox 2

Deployment Guide

Infoblox Terraform Provider v2

Introduction
Infoblox NIOS and Infoblox Terraform Provider
Prerequisites
Key Terms
Infoblox Grid Configuration
DNS Zone
Terraform Installation
Windows
macOS
Linux
Terraform Commands
Installing and Authenticating With the Infoblox Terraform Provider
Common Fields
Comments
Extensible Attributes
Extensible Attributes for Cloud Objects
TTL
Examples
Create DNS Records
Apply Terraform Configuration File
Provision Network and VM in Azure
Apply Terraform Configuration Files

Additional Resources

10

10

10

10

11

"

11

12

15

18

22

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

Terraform is an Open Source Infrastructure as Code (IaC) tool that is developed by HashiCorp. It enables
predictable and consistent provisioning of infrastructure across many public and private cloud providers.

Infoblox NIOS provides core network services that include integrated, secure, and easy-to-manage DDI
services - DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol) and IPAM (IP address
management).

The Infoblox Terraform provider interfaces with Infoblox NIOS through REST API to provide IP Address
Management and DNS Services. Instead of manually provisioning IP addresses and DNS records for network
devices and interfaces in your infrastructure, you can use the plugin to automate these steps with Infoblox
NIOS.

The Infoblox Terraform provider includes the following Resource types:

e Network View

e |Pv4 and IPv6 Network Containers

e |Pv4 and IPv6 Networks

e |Pv4 and IPv6 Address Allocation - Allocates IP and creates Host record
e DNS Records: A, AAAA, CNAME, PTR

e |Pv4 and IPv6 Association - Updates Grid with VM data

The resources listed support Create, Update, and Delete operations.

The following Data Sources are included :

e |Pv4 Networks
e DNS Records: A, CNAME

This deployment guide covers the use of the Infoblox Terraform provider, v2.0.1. Examples in this guide show
integration with the Azure public cloud. Additional examples for all resource types and data sources as well as
example integrations with AWS and VMware vSphere cloud platforms can be found in the Infobloxopen GitHub

repository, https://github.com/infobloxopen/terraform-provider-infoblox/tree/master/examples/v0.14. Full
documentation on all of the resources and data sources can be found at

https://docs.infoblox.com/display/ipamdriverterraform or in the Terraform registry,
https://registry.terraform.io/providers/infobloxopen/infoblox/latest/docs.

The following are prerequisites for using the Infoblox Terraform provider:

e Terraform version 0.14 or newer.

e Infoblox NIOS or vNIOS appliance, version 8.5 or newer with required licenses: Grid, NIOS, DNS.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

https://github.com/infobloxopen/terraform-provider-infoblox/tree/master/examples/v0.14
https://docs.infoblox.com/display/ipamdriverterraform
https://registry.terraform.io/providers/infobloxopen/infoblox/latest/docs

e Provider: Plugins for Terraform that interact with other tools such as cloud providers, SaaS
applications, and other APIS.

e Terraform Configuration: A document written in the Terraform language, which tells Terraform how to
manage a collection of infrastructure.

e Resource Block: Defines one or more infrastructure objects in a Terraform configuration. Each
provider contains a collection of resources for managing its associated infrastructure.

e Data Source: Used in a Terraform configuration to pull in data from another source to be used by
Terraform. Providers can include data sources to access information from their associated
infrastructure.

e Terraform Registry: A repository of providers for Terraform. The registry is directly integrated with
Terraform, allowing you to specify providers in your configuration files.

To use the Infoblox Terraform provider, you will need an Infoblox Grid running NIOS 8.5 or newer. This guide
assumes you have a Grid with at least one member already deployed. For instructions on deploying Infoblox
NIOS or vNIOS, refer to the deployment guide for the appropriate platform. Deployment guides for many
available platforms can be found at https://www.infoblox.com/resources/. NIOS and virtual appliance
documentation can be found at https://docs.infoblox.com.

To use all of the Infoblox Terraform provider DNS resource types, you will need at least one Authoritative
Forward-Mapping Zone in your Infoblox Grid.

1. In the Grid Manager, navigate to the Data Management — DNS — Zones tab.

2. Open the + - (Add) dropdown.
3. Select Authoritative Zone.

Dashboards Data Management Smart Folders Grid Administration

IPAM VLANs Super Host File Distribution

= Zones Members Name Server Groups Shared Record Groups Subscriber Services Deployment Bl

default ¢ R

Quick Filter | None LI | 2] Fitter on Show Filter ~ "i= Toggle flat view
+- -8
[l Authoritative Zone Grid Primary Se... Type Comment Multi-master Zone
Forward Zone
0 h Auto-created No
Stub Zone
[l .0.0.... Auto-created No

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

https://www.infoblox.com/resources/
https://docs.infoblox.com

4. On Step 1 of the wizard, select Add an authoritative forward-mapping zone.
5. Click Next.

Add Authoritative Zone Wizard > Step 1 of 6

o Add an authoritative forward-mapping zone
Add an authoritative IPv4 reverse-mapping zone

Add an authoritative IPv6 reverse-mapping zone

Cancel Next Schedule for Later

6. On Step 2, enter the name of your zone.
7. Click Next.

Add Authoritative Zone Wizard > Step 2 of 6

*Name |ibxdemo.com |

Comment

Disable

Disabling large amounts of data may take a longer time to execute.

Cancel Previous Next Schedule for Later

Save & Close

Save & Close

-

-

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

8. On Step 3, select Use this set of name servers.

9. Open the + - (Add) dropdown.
10.Select Grid Primary.

Add Authoritative Zone Wizard > Step 3 of 6 a
(2]
None &

Use this Name Server Group Choose One ;l

° Use this set of name servers

[] Name « IPv4 Address IPv6 Address Type Stealth TSIG Grid Primary

Grid Secondary
No data
External Primary

External Secondary

Q

Cancel Previous Next Schedule for Later Save & Close ~

11.Click Select in the Add Grid Primary panel.

12.For a Grid with only one member, it will be automatically selected. If you have multiple Grid members,
select the one you want to use as a name server.

Add Authoritative Zone Wizard > Step 3 of 6 a
(2]
None &

Use this Name Server Group Choose One j

o Use this set of name servers

+ -

Add Grid Primal

v a
Select Clear | infoblox.localdomain
| Stealth
Add Cancel

[7] Name - IPv4 Address IPv6 Address Type Stealth TSIG

Cancel Previous Next Schedule for Later Save & Close ~

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

13.Click Add.
14.Click Save & Close.

Add Authoritative Zone Wizard > Step 3 of 6

e
None &
Use this Name Server Group Choose One j
o Use this set of name servers
] Name « IPv4 Address IPv6 Address Type Stealth TSIG
[] infoblox.local... 172.17.1.222 Grid Primary No No
s |
K~/
Cancel Previous Next Schedule for Later Save & Close -

15.Click Restart in the warning bar when prompted.

The configuration changes require a service restart to take effect. Click Restart to restart relevant services now or click Ignore to restart the services later. Restart View Changes Ignore

Infoblox :E: Dashboards Data Management Smart Folders Grid Administration

IPAM VLANs Super Host File Distribution

16.Click Restart in the Restart Grid Services window.

Restart Grid Services]
5 9
Restart Grid Services © !f needed 24

Force service restart
A forced restart may be delayed if there are pending restarts for the same

service.

Restart Method © Restart all Restart Groups

Simultaneously for all members

Sequentially for all members

Affected Members and Services View Pending Changes

To start polling, click the Poll Members icon above this table ...

Cancel Restart

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

Terraform is available for many operating systems. Instructions and download information for the supported
platforms can be found at https://learn.hashicorp.com/tutorials/terraform/install-cli. The following are basic
installation methods for Windows, macOS, and Debian/Ubuntu Linux operating systems.

To install Terraform on Windows, use the Chocolatey package manager command:
choco install terraform

For information on installing and using Chocolatey, refer to https://chocolatey.org/.

To install Terraform on macOS, use the Homebrew package manager command:
brew install hashicorp/tap/terraform

For information on installing and using Homebrew, refer to https://brew.sh/.

Terraform can be installed on many Linux distributions using their native package managers. To install
Terraform on Ubuntu or Debian Linux, use the following steps:

1. Open a terminal window.
2. Add the HashiCorp GPG key with the command:
curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -

infoblox@az-cli-vm:~$ curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -
[sudo] password for infoblox:

0K
infoblox@az-cli-vm:~$ l

3. Add the HashiCorp Linux repository with the following command:

sudo apt-add-repository “deb [arch=amd64] https://apt.releases.hashicorp.com $(Isb_release
-cs) main”

infoblox@az-cli-vm:~$ sudo apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com $(1sb_release -cs) main"
:1 https://apt.releases.hashicorp.com bionic InRelease [4,421 B]
http://us.archive.ubuntu.com/ubuntu bionic InRelease
http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]

https://apt.releases.hashicorp.com bionic/main amd64 Packages [11.7 kB]
://us.archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB

2
3
14 https://packages.microsoft.com/repos/azure-cli bionic InRelease [3,965 B]
5
6

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://chocolatey.org/
https://brew.sh/

4.

Run the following command to update package information and install Terraform:

sudo apt-get update && sudo apt-get install terraform

infoblox@az-cli-vm:~$ sudo apt-get update && sudo apt-get install terraform
http://us.archive.ubuntu.com/ubuntu bionic InRelease
https://packages.microsoft.com/repos/azure-cli bionic InRelease
http://security.ubuntu.com/ubuntu bionic-security InRelease

http://us.archive.ubuntu.com/ubuntu bionic-updates InRelease
http://us.archive.ubuntu.com/ubuntu bionic-backports InRelease
https://apt.releases.hashicorp.com bionic InRelease

Reading package lists... Done

The following are basic commands you will use while working with the Infoblox Terraform Provider. For
additional information and reference for all Terraform commands, refer to the documentation at

JIwww. terraform.i mmands/index.html. All commands will begin with terraform, followed by a
subcommand. Screenshots of some commands are shown here; others will be shown in the Examples section.

terraform -help: This command displays the common commands available for Terraform.

infoblox@az-cli-vm:~$ terraform -help
Usage: terraform [-version] [-help] <command> [args]

The available commands for execution are listed below.

The most common, useful commands are shown first, followed by
less common or more advanced commands. If you're just getting
started with Terraform, stick with the common commands. For the
other commands, please read the help and docs before usage.

Common commands:
apply Builds or changes infrastructure
console Interactive console for Terraform interpolations
destroy Destroy Terraform-managed infrastructure
env Workspace management
fmt Rewrites config files to canonical format
get Download and install modules for the configuration
graph Create a visual graph of Terraform resources
import Import existing infrastructure into Terraform
init Initialize a Terraform working directory

terraform -version: This command displays the version of Terraform installed on your computer.

infoblox@az-cli-vm:~/tf-guide$ terraform -version

Terraform v1.8.3

terraform init: This command is used to initialize a working directory containing Terraform
configuration files and install Terraform providers such as the Infoblox plugin. This command must be
run in a directory prior to apply or plan. A screenshot is provided in the Examples section.

terraform validate: This command is used to verify that configuration files in the working directory are
valid. Configuration files are validated for syntax and internal consistency. This is applied only to the
configuration and does not access any remote services such as provider APls.

infoblox@az-cli-vm:~ftf-guideS terraform validate

Success! The configuration is valid.

https://www.terraform.io/docs/commands/index.html

e terraform plan -out=<path/file>: The plan command creates an execution plan by determining the
actions needed to achieve a desired state based on the configuration files in your directory. This
command does not make any changes and is a good way to verify that your configuration files will give
the desired result prior to executing. The -out parameter is optional and records the plan for later use
when applying the configuration. A screenshot is provided in the Examples section.

e terraform apply <plan_file>: The apply command executes changes required to meet the desired
state based on configuration files in your directory. Optionally, add the name of the file output by the
plan command to execute the predetermined actions from the plan command. A screenshot is
provided in the Examples section.

e terraform destroy: This command is used to de-provision Terraform managed infrastructure defined
by the configuration files in your directory. The destroy command will ask for confirmation unless the
-auto-approve argument is used. A screenshot is provided in the Examples section.

In Terraform version 0.13 and later, a required providers block, which must be nested inside a terraform block,
is required to install the Infoblox provider (and most other providers). The following is an example of a required
providers block to install the Infoblox provider v2.0.1:

terraform {
required_providers {
infoblox = {
source = “infobloxopen/infoblox”
version = “~2.0.1”
}
}
}

The terraform block containing the required providers block can be followed by a provider block to pass
additional configuration for the provider such as credentials. The following is an example of a provider block for
Infoblox:

provider “infoblox” {
username = “admin”
password = “password”
server = “10.0.0.1”

}

The server, username, and password arguments specify the Infoblox credentials which will be used when
provisioning and deprovisioning resources in your Infoblox Grid.

If you do not want to include credentials in your Terraform configuration file for Infoblox, they can be stored as
environmental variables on your system instead. For example, you can make these credentials available on
Linux and macOS systems using the following commands in your terminal:

export INFOBLOX_USERNAME="admin”
export INFOBLOX_PASSWORD="password”
export INFOBLOX_SERVER="10.0.0.1"

When you export the credentials as shown above, you can omit them from your provider block.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

All of the Infoblox Terraform resources support fields for comments and extensible attributes. Additionally, DNS
record resources support the TTL field. These fields are all optional.

The comment field is used to add a comment or description to the object created. Comments can be viewed in
the Grid Manager GUI or returned as part of an API call. The comment field takes a string value. The following
is an example of a Network View resource with a comment:

resource “infoblox_network_view” “new_view”
name = “New-View”
comment = “This object is created by Terraform”

}

Extensible attributes (EA) are identifiers applied to objects in the NIOS Grid, similar to tags used in Azure or
AWS, that allow you to further define and track objects. The optional ext_attrs argument for all resources in the
Infoblox provider allows you to add extensible attributes to the objects being created. You can add any
extensible attribute to your resource that is defined in the Grid and allowed for that object type. The ext_attr
argument contains a JSON encoded block of key/pair values. This example shows a Network resource with
ext_attrs to add values for Location and Site EAs:

resource “infoblox_ipv4_network” “new_network” {
cidr = “10.101.0.0/24”
ext_attrs = jsonencode({
“Location” = “California”
“Site” = “HQ”
]
}

For additional information on managing extensible attributes, refer to NIOS documentation,
https: .infoblox.com/display/ILP/NIOS.

Extensible Attributes for Cloud Objects

The Infoblox provider for Terraform is commonly used with Infoblox Cloud Network Automation features to
automate DNS and IPAM for private and public cloud platforms. To use Terraform with the Cloud API for CNA,
or with Cloud Platform (CP) appliances, specific extensible attributes must be included in the ext_attrs
argument. You must include values for: CMP Type, Tenant ID, and Cloud APl Owned. The following is an
example of a ext_attrs argument for a cloud object:

ext_attrs = jsonencode({
“CMP Type” = “Terraform”
“Tenant ID” = “tenant-1”
“Cloud APl Owned” = “True”

i

You can include other extensible attributes for cloud objects in addition to the three which are required.

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

https://docs.infoblox.com/display/ILP/NIOS

The time to live (TTL) field is supported for all DNS record resources and data sources. TTL specifies the time
that a name server is allowed to cache a record before updating the data. The TTL field takes an integer value
and is expressed in seconds. A value of 0 indicates the record should not be cached. If no TTL field is
specified, the record created will inherit this value from the parent zone. The following is an example of an A
record resource which sets a TTL of 3600 seconds (1 hour):

resource “infoblox_a_record” “new_record” {
fqdn = “newrecord.ibxdemo.com”
ip_addr = “192.168.233.4”
ttl = 3600

}

This section provides examples of Terraform configuration files for use with the Infoblox Terraform provider.
Required file syntax and formatting may change at any time and without notice. These examples are provided
as-is and without warranty. For additional information on Terraform configuration language including changes in
new versions, refer to the Terraform documentation: https://www.terraform.io/docs/configuration/index.html. For
additional information on usage of Infoblox plugin resources including those not shown in these examples, refer
to the Infoblox Terraform provider on GitHub: https://github.com/infobloxopen/terraform-provider-infoblox.

This example demonstrates a configuration file used to create DNS records for a DNS server. The configuration
will create an A record and CNAME record. In order for this configuration to be successfully applied, you will
need to have an existing authoritative DNS zone. Copy the below example into a text file and save as
dns_records.tf. Replace the server, username, and password values with credentials from your Grid Master.
Values used for other arguments such as CIDRs and names can be changed as desired for your environment.
Lines that begin with # are comments explaining the resources and are not read when applying the
configuration. The terraform and nested required provider block is required for Terraform version 0.13 and later.

Terraform block containing the required providers block to install the Infoblox provider
terraform {
required_providers {
infoblox = {
source = "infobloxopen/infoblox"
version = "2.0.1"
}
}
}

Provider block for Infoblox credentials
provider "infoblox™ {

server = "1.2.3.4"

username = "admin"

password = "infoblox"

}

Create A record
resource "infoblox_a_record" "dynamic_record" {

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

https://www.terraform.io/docs/configuration/index.html
https://github.com/infobloxopen/terraform-provider-infoblox

network_view = "default"

dns_view = "default"

fqdn = "server1.ibxdemo.com"

Dynamically allocate IP from an existing network. To statically assign an IP, use the ip_addr
argument instead of cidr.

cidr ="192.168.208.0/24"

ttl = 3600

resource "infoblox_cname_record"” "cname_1" {
dns_view = "default"
canonical = infoblox_a_record.dynamic_record.fqdn
alias = "server1-alias.ibxdemo.com"
ttl = 3600

Apply Terraform Configuration File

To deploy resources using the example configuration file above, save the file in a directory on your computer.
Open a terminal and navigate to that directory. Run terraform init to initialize and install the Infoblox provider.

infoblox@az-cli-vm:~/tf-quide/dns$ terraform init
Initializing the backend...

Initializing provider plugins...
Finding infobloxopen/infeoblox versions matching "2.8.1"...
Installing infobloxopen/infoblox v2.0.1...
- Installed infobloxopen/infoblox v2.8.1 (signed by a HashiCorp partner, key ID B355854AA5DBB1BE)

artner and community providers are signed by their developers.
If you'd like to know more about provider signing, you can read about it here:
ttps://www.terraform.io/docs/cli/plugins/signing.html

erraform has created a lock file .terraform.lock.hcl to record the provider
elections it made above. Include this file in your version control repository
o that Terraform can guarantee to make the same selections by default when
lyou run "terraform init" in the future.

erraform has been successfully initialized!

Run the command terraform plan -out=plan1 to verify your environment and create an execution plan.

infoblox@az-cli-vm:~/tf-guidefdnsS terraform plan -out=plani

Terraform used the selected providers to generate the following execution
Resource actions are indicated with the following symbols:
create

Terraform will perform the following actions:

infoblox_a_record.dynamic_record will be created

resource "infoblox_a record" "dynamic_record" {
cidr = "192.168.208.0/24"
dns_view "default"
fqdn = "serverl.ibxdemo.com"
id = (known after apply)
network_view = "default"”
ttl = 3600

}

infoblox_cname_record.cname_1 will be created

resource "infoblox_cname_record” "cname_ 1" {
alias = "serverl-alias.ibxdemo.com"
canonical "serverl.ibxdemo.com"
dns_view "default”
id (known after apply)
ttl = 3600

}

Plan: 2 to add, ® to change, 8@ to destroy.

If there are any errors, make corrections in your configuration files. As long as there are no errors shown, you
are ready to apply the configuration. Run the terraform apply plan1 command to execute your plan.

infoblox@az-cli-vm:~/tf-quide/dns
infoblox_a_record.dynamic_ record. Creating...
infoblox_a_record.dynamic_record: Creation complete after 8s [id=record:a/ZG5zLmJpbmRfYSQ

uX2R1ZmF1bHQuY29tLmlieGR1bW8sc2VydmVyMSwWxOTIUMTY4LjIw0C4y: serverl. ibxdemo.comfdefault]

infoblox_cname_record.cname_1: Creating...
infoblox_cname_record.cname_1: Creation complete after 1s [id=record:cname/ZG5zLmJpbmRfY2
ShbWUKL19kZWZhdWx0LmNvbS5pYnhkZWivLnNlenZ1lcjEtYWxpYXM: serverli-alias.ibxdemo.com/default]

Apply complete! Resources: 2 added, © changed, 0 destroyed.

To view the new DNS records in your Infoblox Grid, login to Grid Manager and navigate to the Data
Management — DNS tab. Click on your DNS zone to view the records.

Infoblox ;E:. Dashboards Data Management Cloud SmartFolders Grid Administration
default IPAM VLANs Super Host DHCP File Distribution
')f Zones Members/Servers Mame Server Groups Shared Record Groups Subscriber Services Deployment Blacklist Rulesets
default

ibxdemo.com authoritative Zone & 4 R

Records Subzones
Quick Filter None v | X Fitter On Show Fiter "= Toggle flat view
+ - -8
Name - Type Data Record Source
S0A Record Serial 264 System
MNAME infablox.localdomain
RMNAME please_set_email absolutely.nowhere
Refresh 10800
Retry 36800
Expire 2419200
MNegative Caching TTL 300
NS Record infoblox. localdomain System
servari A Record 192.168.208.2 Static
sarveri-alias CMNAME Record sarver.ibxdemo.com Static

When you are ready to deprovision the example resources, back in your terminal run the terraform destroy
command.

infoblox@az-cli-vm:~/tf-gu fdnsS terraform destroy -auto-approve
nfoblox_a_record.dynamic_record: Refreshing state... [id=record:a/ZG5zLmJIpbmRfYSQuX2R1lZm
1bHQuY29tLmlieGR1bWB8sc2VydmVyMSwxOTIUMTY4LjIw0C4y:serverl.ibxdemo.com/default]
nfoblox_cname_record.cname_1: Refreshing state... [id=record:cname/ZG5zLmIpbmRfY25hbWUkL
9kZWZhdWxOLmNvbS5pYnhkZWivLnNlcnZlcjEtYWxpYXM: serverl-alias.ibxdemo.com/default]

erraform used the selected providers to generate the following execution plan. Resource
actions are indicated with the following symbols:

destroy

erraform will perform the following actions:

infoblox_a_record.dynamic_record will be
resource "infoblox_a_record” "dynamic_record"” {
cidr = "192.168.2688.0/24"

"default"”

"serverl.ibxdemo.com"

"record:a/ZG5zLmIpbmRfYSQuX2R1ZmF1bHQuY29tLmlieGR1bW8sc2VydmVyMSwx
ri.ibxdemo.com/default”

"default"

3600

dns_view

fqdn

id
OTIuMTY4LjIwOC4y:serv

network_view

ttl

Inom 1nn

The records will be removed from your Infoblox Grid.

This example demonstrates configuration files used to provision a new virtual network and virtual machine in
Azure. The example uses the Infoblox provider to add the network container and network into the Infoblox Grid,
find the next available IP address to use for the VM, create a DNS Host record for the VM, and update the Grid
with metadata for the VM. We will use two files, infoblox.tf and vm.tf.

The first file, infoblox.tf will contain the resource blocks to create and identify objects in the Infoblox Grid. Copy
the below example into a text file and save as infoblox.tf. Replace the server, username, and password values
with credentials for your Grid Master. Values used for other arguments such as CIDRs and names can be
changed as desired for your environment. Lines that begin with # are comments explaining the resources and
are not read when applying the configuration. The terraform and nested required provider block is required for
Terraform version 0.13 and later.

Terraform block containing the required providers block to install the Infoblox provider
terraform {
required_providers {
infoblox = {
source = "infobloxopen/infoblox"
version ="2.0.1"
}
azurerm = {
source = "hashicorp/azurerm”
version = "2.68.0"

}
}
}

Provider block for Infoblox credentials
provider "infoblox" {

username = "admin"

password = "infoblox"

server = "1.2.3.4"

}

Create Network Container in Grid
resource "infoblox_ipv4_network_container
network_view = "default"
cidr ="192.168.233.0/24"
comment = "New Azure VNet"
ext_attrs = jsonencode({
"Tenant ID" = "Azure-tenant”
"CMP Type" = "Azure"
"Cloud APl Owned" = "True"

D
}

Create network object in Grid

resource "infoblox_ipv4_network™ "az_network" {
network_view = "default"
allocate_prefix_len = 25
parent_cidr = infoblox_ipv4_network_container.az_vnet.cidr

az_vnet" {

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

reserve_ip =2

ext_attrs = jsonencode({
"Network Name" = "tfsub"
"Tenant ID" = "Azure-tenant”
"CMP Type" = "Azure"
"Cloud APl Owned" = "True"

D
}

Allocate IP address from new network for a new VM
resource "infoblox_ipv4_allocation" "az_allocation" {
network_view = "default"
dns_view = "default"
cidr = infoblox_ipv4_network.az_network.cidr
fqdn = "az-vm1.ibxdemo.com"
enable_dns = "true"
enable_dhcp = "false"
ext_attrs = jsonencode({
"VM Name" = "az-vm1"
"Tenant ID" = "Azure-tenant"
"CMP Type" = "Azure"
"Cloud APl Owned" = "True"

b
}

Update Grid with VM data
resource "infoblox_ipv4_association" "az_associate" {
network_view = infoblox_ipv4_allocation.az_allocation.network_view
dns_view = infoblox_ipv4_allocation.az_allocation.dns_view
fqdn = infoblox_ipv4_allocation.az_allocation.fqdn
enable_dns = infoblox_ipv4_allocation.az_allocation.enable_dns
enable_dhcp = infoblox_ipv4_allocation.az_allocation.enable_dhcp
cidr = infoblox_ipv4_network.az_network.cidr
mac_addr = azurerm_network_interface.ni.mac_address
ip_addr = infoblox_ipv4_allocation.az_allocation.ip_addr
ext_attrs = jsonencode({
"Network Name" = azurerm_subnet.subnet.name
"VM Name" = azurerm_virtual_machine.vm.name
"VM ID" = azurerm_virtual_machine.vm.id
"Tenant ID" = "Azure-tenant”
"CMP Type" = "Azure"
"Cloud APl Owned" = "True"

D
}

The second file, vm.tf will contain the resource blocks to create resources in Azure, using values provided by
the Infoblox resources. Copy the below example into a text file and save as vm.tf. Replace the subscription ID,
client ID, client secret, and tenant ID with credentials authorized to create resources in your Azure environment.
To use different methods of authenticating with Azure, refer to the Azure provider documentation:

https://reqistry.terraform.io/providers/hashicorp/azurerm/latest/docs. Values used for other arguments such as

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

regions and names can be changed as desired for your environment. Lines that begin with # are comments
explaining the resources and are not read when applying the configuration.

Provider block for Azure credentials
provider "azurerm™ {
features {}
subscription_id = "azure-subscription-id"
tenant_id = "azure-tenant-id"
client_id = "azure-app-registration-client-id"
client_secret = "azure-app-registration-client-secret"

}

Create a resource group in Azure for the new resources
resource "azurerm_resource_group” "terraform™ {

name = "tf-ibx-grp"

location = "centralus™

}

Create a VNet

resource "azurerm_virtual_network" "vnet" {
name = "tfvnet"
address_space = [infoblox_ipv4_network_container.az_vnet.cidr]
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name

}

#Create subnet - references infoblox_network for CIDR

resource "azurerm_subnet" "subnet” {
name = "tfsub"
resource_group_name = azurerm_resource_group.terraform.name
virtual_network_name = azurerm_virtual_network.vnet.name
address_prefixes = [infoblox_ipv4_network.az_network.cidr]

Create public IP - OPTIONAL

resource "azurerm_public_ip" "ip" {
name = "tfip"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name
allocation_method = "Dynamic”
domain_name_label = "ibxvmiplabel”

Create network interface - references infoblox_ipv4_allocation for IP address
resource "azurerm_network_interface"” "ni" {
name = "tfni"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name

ip_configuration {
name = "ipconfiguration”

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

subnet_id = azurerm_subnet.subnet.id
private_ip_address_allocation = "static"
private_ip_address = infoblox_ipv4_allocation.az_allocation.ip_addr
public_ip_address_id = azurerm_public_ip.ip.id
}
}

Create virtual machine - attaches network interface created in previous block
resource "azurerm_virtual_machine" "vm"
name = "az-vm1"
location = azurerm_resource_group.terraform.location
resource_group_name = azurerm_resource_group.terraform.name
network_interface_ids = [azurerm_network_interface.ni.id]
vm_size = "Standard_DS1_v2"
storage_image_reference {
publisher = "Canonical"
offer = "UbuntuServer"
sku = "18.04-LTS"
version = "latest"
}
storage_os_disk {
name = "myosdisk"
caching = "ReadWrite"
create_option = "Fromlmage"
}
os_profile {
computer_name = "az-vm1"
admin_username = "madmin"
admin_password= "Infoblox_123"
}
os_profile_linux_config {
disable_password_authentication = false
}
}

Apply Terraform Configuration Files

To deploy resources using the example configuration files above, save them both in a single directory on your
computer. Open a terminal and navigate to that directory.

infoblox@az-cli-vm:~/tf-guide$ 1s -al

total 16

drwxr-xr-x 2 infoblox infoblox 4096 Jul 28 10:34
drwxr-xr-x 17 infoblox infoblox 4696 Jul 27 10:51

-rw-rw-r-- 1 infoblox infoblox 2133 Jul 27 18:58 infoblox.tf

-rw-rw-r-- 1 infoblox infoblox 2422 Jul 27 10:50 vm.tf
infoblox@az-cli-vm:~/tf-guides$ |]

Run terraform init to initialize and install the Infoblox and Azure providers.

infoblox@az-cli-vm:~/tf-guide$ terraform init

Initializing the backend...

Initializing provider plugins...
Finding infobloxopen/infoblox wversions matching "2.0.1"...
Finding hashicorpfazurerm versions matching "2.68.0"...
Installing infobloxopen/infoblox v2.8.1...
Installed infobloxopen/infoblox v2.8.1 (signed by a HashiCorp partner, key ID B355854AA5SDBEB18E)
Installing hashicorp/azurerm v2.68.0...
Installed hashicorpfazurerm v2.68.0 (signed by HashiCorp)

Partner and community providers are signed by their developers.
If you'd like to know more about provider signing, you can read about it here:
https://www.terraform.io/docs/clifplugins/signing.html

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

Run the command terraform plan -out=plan1 to verify your environment and create an execution plan.
infoblox@az-cli-vm:~/tf-guides terraform plan -out=plani

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:
create

Terraform will perform the following actions:

azurerm_network_interface.ni will be created
resource "azurerm network interface" "ni
applied dns _servers = (known after
dns_servers = (known after
enable_accelerated networking false
enable_ip forwarding false
id (known after
internal dns name label = (known after
internal domain_name suffix = (known after
location "centralus”
mac_address (known after
name "tfni"
private_ip_address (known after

If there are any errors, make corrections in your configuration files. As long as there are no errors shown, you
are ready to apply the configuration. Run the terraform apply plan1 command to execute your plan.

infoblox@az-cli-vm:~/tf-guide$S terraform apply planil

infoblox_ipv4_network_container.az_vnet: Creating...

infoblox_ipv4_network_container.az_vnet: Creation complete after 2s [id=networkcontainer/ZG5zLm51dHdvcmtfY29udGFpbmVyJDESM14xNjguMjMzLjAVMIQVM
A:192.168.233.0/24/default]

infoblox_ipv4_network.az_network: Creating...

azurerm_resource_group.terraform: Creating...

azurerm_resource_group.terraform: Creation complete after 1s [id=/subscriptions/Riiaii®all AW {resourceGroups/tf-ibx-grp

azurerm_virtual_network.vnet: Creating...

azurerm_public_ip.ip: Creation complete after 3s [id=/subscriptions/sssps=ps m=s e /resourceGroups/tf-ibx-grp/providers/M
icrosoft.Network/publicIPAddresses/tfip]

azurerm_virtual_network.vnet: Creation complete after 5s [id=/subscriptions/Esimalfeil il =l = - {resourceGroups/tf-ibx-grp/pro
viders/Microsoft.Network/virtualNetworks/tfvnet]

infoblox_ipv4_network.az_network: Still creating... [10s elapsed]

infoblox_ipv4_network.az_network: Creation complete after 13s [id=network/ZG5zLm51ldHdvcmskMTkyLjE20C4yMzMuMC8YNS8wW:192.168.233.0/25/default]
infoblox_1ipv4_allocation.az_allocation: Creating...

azurerm_subnet.subnet: Creating...

infoblox_ipv4_allocation.az_allocation: Creation complete after 1s [id=record:host/ZG5zLmhvc3QkL19kZWZhdWxOLMNvbS5pYnhkZW1VLMF6LXZtMQ:az-vml.1
bxdemo.com/default]

azurerm_subnet.subnet: Creation complete after 4s [id=/subscriptions /il e B Al o 0 e /resourceGroups/tf-ibx-grp/providers/
Microsoft.Network/virtualNetworks/tfvnet/subnets/tfsub]

azurerm_network_interface.ni: Creating...

azurerm_network_interface.ni: Creation complete after 2s [id=/subscriptions/k /resourceGroups/tf-ibx-grp/pro
viders/Microsoft.Network/networkInterfaces/tfni]

azurerm_virtual_machine.vm: Creating...

azurerm_virtual_machine.v Still creating... [10s elapsed]

azurerm_virtual_machine.vm: Still creating... [20s elapsed]

azurerm_virtual_machine.vm: Creation complete after 21s [id=/subscriptions /el S /resourceGroups/tf-ibx-grp/prov
iders/Microsoft.Compute/virtualMachines/az-vm1]

infoblox_ipv4_association.az_associate: Creating...

infoblox_ipv4_association.az_associate: Creation complete after 1s [id=record:host/ZG5zLmhvc3QkL19kZWZhdWxOLMNvbS5pYnhkZWivLmF6LXZtMQ:az-vml. 1
bxdemo.com/default]

Apply complete! Resources: 10 added, 0 changed, 0 destroyed.

To view the new network container (VNet) in your Infoblox Grid, login to Grid Manager and navigate to the Data
Management — IPAM tab.

Infoblox :E: Dashboards Data Management Cloud Smart Folders Grid Administration

VLANs Super Host DHCP DNS File Distribution

: default Network View [

Quick Filter Mone W | Filter Off Show Filtar Toggle flat view
+ - -8
Network Cloud Usage Owned By Comment Delegated To IPAM LUtilization
192.168.233.0/24 Cloud from adapter Cloud adapter MNew Azure VNet -D%

Click on the network container to view the network (subnet) that was created inside.

& \pam Home
192.168.233.0/24 GCloud IPv4 Network Container ¢* [

Net Map List

Quick Filter Mone W | Filter Off Show Filter "= Toggle flat view

+- $12-18

Network Cloud Usage Owned By Comment Delegated To IPAM UHtilization

il 192.168.233.0425 Cloud from adapter Cloud adaptar { 3.9%

To view details of your network including the IP address allocated to your new VM, click on the network.

% |pAM Home > 192.168.233.0/24
192.168.233.0/25 .z, Cloud Pva Network #* [Goto DHCP View

IP Map List

Quick Filter| None ~| | [EZJ Fiter on Show Filter

+- Sl=-lal8e
D = IP Address = Name MAC Address DHCP Client Id.. Status Type Discover Now Usage
D = 192.168.233.0 Used IPv4 Network
D = 192.168.233.1 Used IPv4 Reservation DHCP
D S 192.168.233.2 Used IPv4 Reservation DHCP
D = 192.168.233.3 Used IPv4 Reservation DHCP
D = 192.168.233.4 az-vm1.ibxdemo.com 00:0d:3a:42:12:3f Used Host DNS
| = 192.168.233.5 Unused

To view the DNS host record created for your VM, navigate to the Data Management — DNS — Zones and
click on your DNS zone.

Infoblox £ Dashboards Data Management Cloud Smart Folders Grid Administration

.+.

default IPAM VLANs Super Host DHCP File Distribution

= Zonas Mambears/Sarvers Name Sarver Groups Shared Record Groups Subscriber Sarvices Daployment Blacklist Rulesats

b

default
ibxdemo.com Authoritativezone & #* R

Records Subzones

Quick Filter Mone v| | [Fiteron Show Filter ":= Toggle flat view

+- -1&-18

F| = Name - Type Data Record Source
0a = S0A Record Sarial 235 System
MMAME infoblox.localdomain
RMNAME please_set_email absolutely.nowhere
Refresh 10800
Retry 3600
Expire 2419200

Negative Caching TTL 900
|:| = NS Record infoblox.localdomain System

B = az-vmi Host 192.168.233.4 Static

Infoblox Deployment Guide - Infoblox Terraform Provider v2 (August 2021)

21

To view the resources created in your Azure subscription, login to the Azure portal and navigate to your new
resource group.

tf-ibx-grp #

Resource group

|P Search (Cmd+/) | < T Create Edit columns [H] Delete resource group (D Refresh & Export to CSV 5 Open query

Overview ~~ Essentials
B Activity log Subscription (change) : Deployments :
fo Access control (IAM) Subscription (D : Location
@ Tags Tags (change) : Click here to add tags

Events | Filter for any field... | Type == all X Location == all X 57 Add filter
Settings Showing 110 5 of § records. || Show hidden types @
i Deployments I:I Name + Type Ty
U Security (] B az-vm1 Virtual machine
I Policies D £ myosdisk Disk
¢ Properties [] & tip Public IP address
B Locks] tini Network interface
Cost Management D 4 tiynet Virtual network

When you are ready to deprovision the example resources, back in your terminal run the terraform destroy
command.

infoblox@az-cli-vm:~/tf-guideS terraform destroy -auto-approve

infoblox_1ipv4_network_container.az_vnet: Refreshing state... [id=networkcontainer/ZG5zLm51dHdvcmtfY29udGFpbmVyJDESMi4xNjguMjMzLjAVMIQVMA:192.1
68.233.0/24/default]

infoblox_1ipv4_network.az_network: Refreshing state... [id=network/ZG5zLm51dHdvcmskMTkyLjE20C4yMzMuMC8YNS8w:192.168.233.0/25/default]
infoblox_1ipv4_allocation.az_allocation: Refreshing state... [id=record:host/ZG5zLmhvc3QkL19kZWZhdWxOLmMNvbS5pYnhkZW1vLMF6LXZtMQ:az-vml.ibxdemo.
com/default]

azurerm_resource_group.terraform: Refreshing state... [id=/subscriptions/Fmmswm mm 5T 070 e JresourceGroups/tf-ibx-grp]
azurerm_virtual_network.vnet: Refreshing state... [id=/subscriptions/Gsfmedsd duy b apldi gl by Shandd e J/resourceGroups/tf-ibx-grp/providers/
Microsoft.Network/virtualNetworks/tfvnet]

azurerm_public_ip.ip: Refreshing state... [id=/subscriptions/fsfeadipd bbb apldi gf b5 s dl ai i’ /resourceGroups/tf-ibx-grp/providers/Microsof
t.Network/publicIPAddresses/tfip]

azurerm_subnet.subnet: Refreshing state... [id=/subscriptions/iis = /resourceGroups/tf-ibx-grp/providers/Microso
ft.Network/virtualNetworks/tfvnet/subnets/tfsub]

azurerm_network_interface.ni: Refreshing state... [id=/subscriptions/kelsslsd § 8 Sali o 10§ SEESIT 411" /resourceGroups/tf-ibx-grp/providers/
Microsoft.Network/networkInterfaces/tfni]

The IPAM and DNS objects will be removed from your Infoblox Grid and the Azure resources will be deleted.

e Infoblox Terraform Provider Documentation: https://docs.infoblox.com/display/ipamdriverterraform

e Infoblox Plugin for Terraform GitHub: https://qgithub.com/infobloxopen/terraform-provider-infoblox

e Infoblox Plugin for Terraform in the Terraform Registry:
https://reqgistry.terraform.io/providers/infobloxopen/infoblox/latest

https://docs.infoblox.com/display/ipamdriverterraform
https://github.com/infobloxopen/terraform-provider-infoblox
https://registry.terraform.io/providers/infobloxopen/infoblox/latest

Infoblox 2z

infod@infoblox com | weeeinfoblox com

